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ABSTRACT

Proteins are essential structural and functional units in cells. Proteins form stable

and yet somewhat flexible 3-D structures and often function by interacting with other

molecules. Their functional behaviors are determined by their 3-D structures as well as

their dynamics. Protein dynamics studies are thus very important.

One of the most powerful computational methods for studying protein dynamics is

normal mode analysis (NMA). The low frequency modes especially are of great inter-

est for many protein dynamics studies. Although it provides analytical solutions to a

protein’s collective motions, classical NMA is cumbersome to use and may become even

prohibitive when the system being studies is too large. Many simplified NMA models

have been developed, which use extremely simplified structural models and/or coarse-

grained potentials. However, the dynamics given by such models may not always be fully

realistic.

In this dissertation, I have alleviated these problems by addressing the following

sequence of questions: (1) what is the contribution of inter-residue (inter-atom) forces to

protein normal modes; (2) how to remove the cumbersome energy minimization step in

NMA while preserving most of the accuracy of the model; (3) how to efficiently construct

coarse-grained structural models from all-atom models while maintaining the accuracy in

dynamics. Additionally, using my new models as well as the classical NMA, I have closely

examined the vibrational spectrum of globular proteins in the whole frequency range,

and have found a connection with experimental observations. Finally, as an application

of normal modes, the last part of this thesis presents a novel approach in which normal

modes are used to identify what breathing motions of myoglobin dynamically open ligand
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migration channels. The results are in an excellent agreement with molecular dynamics

simulation results and experimentally determined ligand entry rates.
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CHAPTER 1. OVERVIEW AND OBJECTIVES

1.1 Introduction

Proteins are fundamental functional units in cells. As ubiquitous and versatile macro-

molecules in living organisms, proteins have many different roles, varying from maintain-

ing structures, binding ligands, catalyzing reactions, to sending signals to other systems,

etc. Proteins form stable and yet somewhat flexible 3D structures and often function by

interacting with other molecules. Their functional behaviors are determined by their 3-D

structures as well as their flexibilities. It is fascinating to see how proteins exercise their

precise controls in realizing many different functions, even though the exact mechanisms

of many such processes are not fully known.

The importance of computational studies of protein dynamics and functions has

long been recognized, most notably by the recent Nobel Prize in Chemistry awarded

to Karplus, Levitt, and Warshel for “the development of multiscale models for complex

chemical systems.” [136] Molecular dynamics simulation is one of the most popular tools

for studying the dynamics of proteins and other biological molecules. Another powerful

tool for studying protein dynamics is normal mode analysis (NMA). While molecular

dynamics simulation is stochastic by nature, normal mode analysis provides complete

analytical solutions of protein dynamics locally at and around a specific conformation,

usually an energetically minimized structure.

However, there are some major challenges in applying normal mode analysis. The

classical normal mode analysis uses atomic structure modes and detailed force field po-
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tentials that have hundreds and even thousands of parameters. Energy minimization is

always required before computing the normal modes. The whole process is cumbersome

and time consuming and may become even prohibitive for large systems. To overcome

these hindrances, simplified NMA models such as elastic network models have been de-

veloped. However, the accuracy of these simplified models is questionable and there is a

lack of tight connections between the classical NMA and the simplified NMAs.

In this dissertation, I have addressed some of these problems in normal mode com-

putations.

1.2 Thesis Organization

The thesis is organized as follows:

Chapter 1: Overview and Objectives. This chapter gives a general introduction

to the thesis: presenting the research goals and the overall structure of this thesis.

Chapter 2: A Natural Unification of GNM and ANM and the Role of

Inter-Residue Forces. The Gaussian network model (GNM) and anisotropic network

model (ANM) are two elastic network models that have been widely used to study protein

fluctuation dynamics. Both models have strengths and weaknesses. Attempts have been

made in the past to unify the two models but they had severe limitations. This work

presents a novel theoretical result that shows how GNM and ANM can be unified through

taking into account the effect of inter-residue forces. The unification reveals also the role

of inter-residue forces in protein fluctuation dynamics. This new understanding of ANM

triggered a follow-up study reported in Chapter 3.

Chapter 3: Bridging Between NMA and Elastic Network Models. In this

chapter, through steps of simplification that starts with NMA and ends with elastic
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network model (ENM), we have built a tight connection between NMA and ENM. In

the process of bridging the two, we have also discovered several high-quality simplified

models. Our best simplified model has a mean correlation with the original NMA that

is as high as 0.88. In addition, the model is force-field independent and does not re-

quire energy minimization, and thus can be applied directly to experimental structures.

Another benefit of drawing the connection is a clearer understanding why ENMs work

well and how it can be further improved. We have discovered that ANM can be greatly

enhanced by including an additional torsional term and a geometry term.

Chapter 4: Bridging between NMA and Elastic Network Models: Preserv-

ing All-atom Accuracy in Coarse-grained Models. For large protein complexes,

obtaining fine-grained all-atom descriptions of normal mode motions can be computa-

tionally prohibitive because of the limitation of available computational resources. For

this reason, coarse-grained models have been used widely. However, most existing coarse-

grained models use extremely simple potentials to represent the interactions within the

coarse-grained structures and as a result, the dynamics obtained for the coarse-grained

structures may not always be fully realistic. There is a gap between the quality of the

dynamics of the coarse-grained structures given by all-atom models and that by coarse-

grained models. In this chapter, we resolve an important question in protein dynamics

computationshow can we efficiently construct coarse-grained models whose description

of the dynamics of the coarse-grained structures remains as accurate as that given by

all-atom models? Our method takes advantage of the sparseness of the Hessian matrix

and achieves a high efficiency with a novel iterative matrix projection approach.

Chapter 5: Universality of Vibrational Spectra of Globular Proteins. In

1993, ben-Avraham found that the vibrational spectra of five proteins, when properly

normalized, seemed to have one “universal” curve in the torsional space. [10] In this

work, I have extended ben-Avraham’s work to confirm the universality of vibrational
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spectrum of globular proteins in both torsional and Cartesian spaces. Peaks in the

universal spectrum curve are thus not protein specific but force field specific. This

significant result implies that experimental spectra of proteins could be used to guide

the fine tuning of theoretical empirical potentials, and the various features and peaks

observed in theoretical studies could spur experimental confirmation.

Chapter 6: Quantitative Delineation of How Breathing Motions Open

Ligand Migration Channels in Myoglobin and Its Mutants. Ligand migration

and binding are central to the biological functions of many proteins and it is widely

thought that protein breathing motions open up ligand channels dynamically. In this

chapter, I present a novel normal mode-based method that quantitatively delineates

what and how breathing motions open ligand migration channels. Results of applying

the method to myoglobin wild-type and its several mutants are in excellent agreement

with MD simulation results and experimentally determined ligand entry rates.

Chapter 7: Summary and Conclusion

This final chapter presents a summary and concludes the thesis.
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CHAPTER 2. A NATURAL UNIFICATION OF GNM AND

ANM AND THE ROLE OF INTER-RESIDUE FORCES

A paper published in Physical Biology

http://dx.doi.org/10.1088/1478-3975/11/3/036002

Hyuntae Na23 and Guang Song234

Abstract

Gaussian network model (GNM) and Anisotropic network model (ANM) are two

of the elastic network models that have been widely used to study protein fluctuation

dynamics. Both models have strengths and weaknesses. Attempts were made in the

past to unify the two models but had severe limitations. This work presents a novel

theoretical result that shows how GNM and ANM can be unified through taking into

account the effect of inter-residue forces. The unified model, called Force Spring Model, or

FSM, is reduced to ANM when all the inter-residue forces are set to be zero. Moreover,

the unification reveals the role of inter-residue forces in protein fluctuation dynamics.

Specifically, the effect of inter-residue forces is closely examined by studying the changes

in mean-square fluctuations when the inter-residue forces are present.

1This chapter is reprinted with permission of Phys. Biol. 2014, 11(3), 036002.
2Graduate student and Associate Professor, respectively, Department of Computer Science, Iowa

State University.
3Primary researchers and authors.
4Author for correspondence.

http://dx.doi.org/10.1088/1478-3975/11/3/036002
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2.1 Introduction

Gaussian Network Model (GNM) [8] and Anisotropic Network Model (ANM) [2] have

been widely used to study protein fluctuation dynamics and conformation changes. In

2008, Zheng [159] proposed a simple approach to unify the two methods by introducing an

anisotropic parameter fanm. The new method, named Generalized Anisotropic Network

Model, or GANM, is a linear combination of the Anisotropic Network Model (ANM)

and the Gaussian Network Model (GNM) with a contribution ratio fanm that satisfies

0 ≤ fanm ≤ 1:

HGANM = HANM − fanm · (HANM − ΓGNM ⊗ I3), (2.1)

where HANM is the ANM Hessian matrix, ΓGNM is the GNM Kirchhoff matrix, I3 is the

3× 3 identity matrix, and ⊗ is the operator of the Kronecker product. The author then

showed that GANM could outperform GNM and ANM in describing thermal fluctuations

(B-factors) and conformation changes by tuning the parameter fanm.

Zheng’s work represented one of the first attempts to unify the two popular network

models. However, there are a couple of drawbacks in this unification. First, the physical

meaning of the parameter fanm is not clear. Second, which is a more severe problem,

GANM, as a linear combination of GNM and ANM, is not rotationally invariant [77, 137].

This is evident from the fact that it has three, instead of six, zero eigenvalues.

In this work, we present a Spring Force Model (SFM) in which a unification of GNM

and ANM naturally arrives. The derivation uncovers how ANM and GNM should be

unified and what is the physical meaning of the parameters that appear in the unifica-

tion. Moreover, because the model’s Hessian matrix is obtained by taking the second

derivatives of a physically realistic potential, the model is intrinsically rotationally in-

variant.

In ANM model [2], each residue is represented by a single bead, usually the Cα

atoms. As a significant improvement over NMA, ANM uses experimental structures



www.manaraa.com

7

directly as input without the need for energy minimization, and assumes the spring mass

system formed by the Cα atoms is at equilibrium. Inter-residue forces were considered

and formulations for balancing the inter-residue forces to achieve the system equilibrium

were given.

Specifically, for the equilibrium condition, ANM model requires only that the sum

of all the inter-residue forces acting on one bead is zero. How these forces should be

balanced was clearly presented in the original ANM paper (see equations (10) to (15)

in [2]). These forces rebalance themselves when there are external forces exerted on the

protein that cause the structure to deform. As a result, the protein will arrive at a new

equilibrated state, where the net force at each node is zero but the inter-residue forces

may not be zero, the details of which have been clearly worked out by the same authors

in [3, 4, 36, 157].

However, when used to compute normal modes or B-factors for a given structure,

ANM assumes the input structure is at equilibrium in the stricter sense that the all the

springs are relaxed. That is, it assumes sij = s0
ij (where sij and s0

ij are instantaneous

and initial separation distances between residues i and j), as stated in the text between

equations (18) and (19) in the original ANM paper [2].

Our model is similar to ANM and is a simple extension of it: both are a spring mass

model and assume the input structure is at equilibrium; both have the same requirement

for the equilibrium condition, i.e., the sum of inter-residue forces on a given node is zero.

The major difference between our model and ANM is that in ANM, probably for the sake

of simplicity, all the springs are initially set to be relaxed (i.e., sij = s0
ij) and thus all the

inter-residue forces are initially set to be zero, while in our model, inter-residues forces

are not zero initially. Indeed, this is a more realistic condition, since at equilibrated or

energy-minimized structures, the net forces at all the atoms are zero but the inter-atom

forces are usually not zero.
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In the following Method section, we will derive the Hessian matrix for our model.

Since it is based on both a spring network and non-zero initial inter-residue forces, we

name it Force Spring Model, or FSM in short. As a spring-mass model, FSM has a similar

potential function to that of ANM. The derivation of FSM Hessian matrix, however, is

different from ANM in that the inter-residue forces, the first-derivatives of the potential

are no longer assumed to be zero.

2.2 Methods

2.2.1 GNM and ANM

Gaussian Network Model (GNM) was first introduced in [8] under the assumption that

the fluctuations ∆rij between the ith and jth Cα atoms in the folded protein is Gaussianly

distributed. The model use the Kirchhoff matrix ΓGNM to describe the connectivity

among the Cα atoms:

ΓGNM
ij =


−1 if i 6= j and rij ≤ rc

0 if i 6= j and rij > rc

−
∑

i,i 6=j Γij if i = j,

(2.2)

where i and j are the indices of the residues and rc is the cutoff distance, which is usually

set to be 7-8 Å in GNM. Conveniently, the expected value of residue fluctuations, 〈∆ri2〉,

and correlations, 〈∆ri ·∆rj〉, can be obtained from the inverse of the Kirchhoff matrix.

However, GNM can be used to compute only the magnitudes of protein fluctuations.

Anisotropic Network Model (ANM) [2] was introduced to obtain the directions of protein

fluctuations. ANM uses a harmonic Hookean potential to define the interactions among

the atoms, i.e.,

V = (1/2)
∑
i,j

ki,j(ri,j − r0
i,j)

2. (2.3)

For ANM and ANMr, a variant of ANM whose spring constants are inversely propor-

tional to the squared separation distances [153], the spring constants ki,j between atoms

i and j are defined as follows:
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kANM
i,j =

 1, if ri,j < rc

0, otherwise,
(2.4)

kANMr2
i,j = 1/r2

i,j, (2.5)

where ri,j is the Euclidean distance between atoms i and j and rc is the cutoff distance,

which is usually set to be 13 Å in ANM [2]. Other values for the cutoff distance were

also tried later on. For example, Zheng et al. [161] found a cutoff distance between 10

and 15 Å performed equally while Riccardi et al. [106] found 10 Å to be optimal in

reproducing crystallographic B-factors.

The ANM Hessian matrix can be easily obtained by taking the second derivatives of

potential V (see equation (2.3)). Particularly, for atoms i and j that are in contact, the

3 by 3 block element HANM
i,j of the ANM Hessian matrix is:

HANM
i,j =

−1

r2
i,j


xj − xi

yj − yi

zj − zi


(
xj − xi yj − yi zj − zi

)
. (2.6)

2.2.2 Unifying GNM and ANM: the Effect of Inter-Atom Forces

Given a protein with n residues and that each residue is represented by a single bead,

say its Cα atom, one simple way to model the interactions within the system is to let

the beads interact through Hookean springs. The potential energy of the system is:

V = (1/2)
∑
i,j

ki,j(ri,j − r0
i,j)

2, (2.7)

where ri,j and r0
i,j are the instantaneous and equilibrium distances between interacting

residues i and j.

The Hessian matrix of the system is a 3n × 3n positive semi-definite matrix whose

elements are the second derivatives of the potential energy V with respect to xi, yi, and
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zi coordinates of each atom i ∈ {1, ..., n}. It can be written as a n × n block matrix as

follows:

H =



H1,1 H1,2 · · · H1,N

H2,1 H2,2 · · · H2,N

...
...

. . .
...

HN,1 HN,2 · · · HN,N


, (2.8)

with each block element Hi,j being a 3× 3 matrix of the second derivatives:

Hi,j =


∂2V
∂xi∂xj

∂2V
∂xi∂yj

∂2V
∂xi∂zj

∂2V
∂yi∂xj

∂2V
∂yi∂yj

∂2V
∂yi∂zj

∂2V
∂zi∂xj

∂2V
∂zi∂yj

∂2V
∂zi∂zj

 , (2.9)

if i 6= j, and

Hi,i = −
∑
j 6=i

Hi,j . (2.10)

The component ∂2V
∂xi∂xj

in equation (2.9) can be rewritten as:

∂2V

∂xi∂xj
=

∂

∂xi

(
∂V

∂ri,j
· ∂ri,j
∂xj

)
(2.11)

=
∂2V

∂r2
i,j

· ∂ri,j
∂xi
· ∂ri,j
∂xj

+
∂V

∂ri,j
· ∂2ri,j
∂xi ∂xj

(2.12)

= ki,j ·
∂ri,j
∂xi

∂ri,j
∂xj
− fi,j ·

∂2ri,j
∂xi ∂xj

. (2.13)

In the above equation, fi,j = − ∂V
∂ri,j

= -ki,j(ri,j − r0
i,j) is the inter-atom force between

atoms i and j, and ki,j = ∂2V
∂r2i,j

is the spring constant of the spring connecting the two

atoms. In ANM, it is assumed that pairwise distances ri,j of the input structure are

the same as the equilibrium distances r0
i,j, and consequently all fi,j’s are zero. Here, we

loosen this requirement and require instead only the net force at each atom is zero. As

a result, fi,j is not necessarily zero, but ~fnetj =
∑

i fi,j~ui,j = 0 for all j’s, where ~ui,j is

the unit vector pointing from atom i to atom j. In summary, we still assume the input

structure is at equilibrium so that there is no need for energy minimization, but no longer

do we assume the inter-atom forces are all zero.
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Note that since
∂ri,j
∂xi

=
xi−xj
ri,j

, the second term of the second addend in equation (2.13)

can be rewritten as:

∂2ri,j
∂xi∂xj

=
∂

∂xi
(
∂ri,j
∂xj

) = − 1

ri,j
+

(xi − xj)2

r3
i,j

= − 1

ri,j

(
1 +

∂ri,j
∂xi
· ∂ri,j
∂xj

)
. (2.14)

Using fi,j, ki,j, and equation (2.14), the partial derivative in equation (2.11) can be

rewritten as:

∂2V

∂xi∂xj
=

(
ki,j +

fi,j
ri,j

)
·
(
∂ri,j
∂xi
· ∂ri,j
∂xj

)
+
fi,j
ri,j

. (2.15)

In a similar manner, term ∂2V
∂xi∂yj

in equation (2.9) can be written as:

∂2V

∂xi∂yj
=

(
ki,j +

fi,j
rij

)
·
(
∂ri,j
∂xi
· ∂ri,j
∂yj

)
. (2.16)

Likewise, the rest of the matrix in equation (2.9) can be written out. Note that
∂ri,j
∂xi
· ∂ri,j
∂xj

and
∂ri,j
∂xi
· ∂ri,j
∂yj

in the above two equations are the same as the block element of the ANM

Hessian matrix when the spring constant is 1 (see equation (2.6)). Therefore, putting

equations (2.15) and (2.16) together, the block Hessian matrix in equation (2.9) can be

rewritten as:

Hi,j = (ki,j +
fi,j
ri,j

) ·HANM
i,j +

fi,j
ri,j
⊗ I3 (2.17)

= ki,j ·HANM
i,j +

fi,j
ri,j

(
HANM
i,j − ΓGNM

i,j ⊗ I3

)
, (2.18)

where HANM
i,j and ΓGNM

i,j are the i, j elements of the ANM block Hessian matrix and the

GNM matrix, respectively. And they are:

HANM
i,j =

−1

r2
i,j


xj − xi

yj − yi

zj − zi


(
xj − xi yj − yi zj − zi

)
, (2.19)

ΓGNM
i,j = −1. (2.20)
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Remarkably, equation (2.18) naturally unifies the two widely used models, ANM and

GNM. It reveals how they should be combined in order to maintain the rotational invari-

ance and the role of inter-atom forces in this unification. It shows that the parameter

fanm used in GANM by Zheng [159] to linearly combine ANM and GNM actually should

not take arbitrary values, but have to satisfy the constraint that
∑

i fi,j~ui,j = 0, i.e., the

net force at each atom has to be zero. The term
fi,j
ri,j

clearly has the right units. As a

counterpart of ki,j, it represents a special kind of “spring”, whose effect is proportional

to the magnitude of inter-atom forces and inversely proportional to the inter-atom dis-

tances. If we require all inter-atom forces fi,j to be zero, as is in ANM, this Hessian

matrix reduces to ANM Hessian matrix as expected.

It is also possible for the Hessian matrix in equation (2.18) to be reduced to that

of GNM by setting parameters fi,j, the inter-atom forces, to be proportional to inter-

atom distances so that
fi,j
ri,j

= −1. In doing so, however, the net force at each atom

may no longer remain zero, rendering the system to be out of equilibrium. Indeed,

since the Hessian matrix in equation (2.18) is rotationally invariant, there does not exist

a physically correct force assignment that reduces it to the rotationally-variant GNM,

while maintaining the equilibrium.

Equation (2.18) shows also the way in which the inter-atom forces contribute to

the Hessian matrix and in turn, to protein dynamics. In the following section, we will

examine closely the effect of inter-atom forces on protein fluctuation dynamics.

2.2.3 Generating Random Forces

In this section, we present an algorithm for generating random inter-atom forces that

satisfy the stationary point condition. At the stationary point condition, all the atoms

have a net force of zero, i.e., ~fj =
∑

i 6=j fi,j~ui,j = ~0, where fi,j is the force exerted by

atom i on j. A positive/negative fi,j means i exerts a repulsive/attractive force on j.

~ui,j is the unit vector from i to j in the Cartesian coordinate, and ~0 is 3× 1 zero vector.
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Let F = {fi,j | ∀i, j} be the initial set of pairwise forces fi,j that are randomly

generated. By default, F does not satisfy the stationary point condition. To modify F

so that it does satisfy, we take the following steps:

• Compute the net force ~fi at each atom.

• Multiply the Hessian matrix inverse H−1 with ~fi to obtain the instantaneous dis-

placement ~δi for each atom.

• Now imagine we make a displacement of −~δi for each atom i. This displacement

will create forces gi,j among the atom pairs, specifically, gi,j = Hi,j(~δj − ~δi).

• Reset fi,j to be fi,j + gi,j. F now satisfies the stationary point condition.

Algorithm 1 describes the procedure in mathematical details. In the algorithm, P =

{~p1, ~p2, ..., ~pn} denotes atom coordinates, while H the 3n× 3n Hessian matrix.

Lastly, it is worth pointing out without proof that there exist an infinite number of

sets of inter-atom forces that satisfy the stationary point condition.

Algorithm 1 Stationary(H,P, F )

1: ~ui,j ← (~pj − ~pi)/‖~pj − ~pi‖
2: ~fi ←

∑
j 6=i ~ui,jfi,j

3: ~δi ←
∑

j (H−1)i,j ~fi

4: gi,j ← 〈Hi,j(~δj − ~δi), ~ui,j〉
5: F = {fi,j | fi,j = fi,j + gi,j,∀i, j}
6: return F

2.3 Results

In this section, we examine what impact inter-atom forces have on the dynamic

behaviors of proteins. Specifically, the effect of forces is evaluated by observing the

changes in mean-square fluctuations when the inter-atom forces are switched from being

“absent” to “present”, and when different sets of inter-atom forces are applied. To
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compute mean square fluctuations, we will use ANMr model. ANMr is a special kind of

ANM whose only difference from ANM is that its spring constant ki,j is not uniform but

is inversely proportional to the squared distance between a pair of atoms. We choose

to use ANMr to compute mean-square fluctuations because ANMr has been shown to

perform significantly better than ANM [153]. Since ANMr is a special kind of ANM, the

following general statements about ANM apply to ANMr as well.

Recall that, in ANM, a residue is usually approximated by one bead, its Cα atom,

and neighboring Cα’s interact via Hookean springs that are set to be at their equilibrium

at the input structure. This conveniently sets the whole input structure at equilibrium

without any energy minimization. The inter-residue forces, among the Cα atoms, also

are zero.

In reality, even at equilibrium, where the net force at each atom is zero, a protein’s

inter-atom forces are not necessarily zero. These strains that exist inside a protein will

persist even if the system is viewed at the residue level. So for coarse-grained model

like ANM, these strains should take the form of inter-residue forces1. Therefore, if we

consider a coarse-grained model as a mean-field average of an all-atom model, it would

be more accurate to take into account the effect of inter-residue forces. And that is our

focus here.

To study the effect of inter-residue forces, there is, however, another challenge. While

many force fields exist for all-atom models and are used to define precisely how atoms

should interact, it is not clear how residues should interact with one another. Statistical

potentials, especially distance-dependent ones [9, 53, 119, 162] define residue-residue

contact potentials and in theory can be used to compute inter-residue forces. However,

these potentials are the statistical averages over a large number of proteins. When

applied to a specific protein, the inter-residues forces they assign often lack accuracy

1 More precisely speaking, these strains may take also the form of inter-residue torques that involve
three body or even four-body interactions, but multi-body interactions are not considered here for the
sake of simplicity.
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and specificity. Particularly, chances are that it would not set the input structure at

equilibrium.

For this reason, in this work, we do not address the problem of how to compute

inter-residues forces and but leave it as an open question for future research. Instead, we

focus on the effect of these forces if they are ever present. For this purpose, we generate

inter-residues forces randomly. The only constraint we set on these inter-residues forces

is that the net force at each residue is zero. This will guarantee that the input structure

is at stationary point condition.

2.3.1 Generating Sets of Inter-Residue Forces That Satisfy Stationary Point

Condition

Given a protein conformation, which in coarse-grained models such as ANM is often

represented by the Cα coordinates, to study the effect of the inter-residue forces, we

randomly generate sets of inter-residue (or inter-Cα) forces that satisfy the stationary

point condition. Since we are using ANMr model whose spring constants are inversely

proportional to the squared distances between pairs of atoms, we require that the random

inter-residue forces also be roughly proportional to the inverse of the squared distances.

To achieve that, we do the following:

1. Assign to each atom i a random “charge” ci ∈ {−1, 0, 1}, with a probability of

20% being 1 or -1, and 60% being 0. Note that these “charges” are given not to

represent the actual electric charges of the residues, but as a convenient way to

initialize the inter-atom forces.

2. Initialize the pair-wise forces as: fi,j =
cicj

‖~pi−~pj‖2 , where ~pi is the coordinate of residue

i.

3. Update fi,j by applying Algorithm 1 (see Methods section), which guarantees that

the new fi,j’s satisfy the stationary point condition.
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2.3.2 The Effect of Forces on Mean-Square Fluctuations

Now let F be such a set of randomly generated forces. Since F satisfies the stationary

point condition, the corresponding Hessian matrix in equation (2.18) is guaranteed to

have six zero eigenvalues. However, F may represent a saddle point, causing the Hessian

matrix to have negative eigenvalues. In such a case F will be regenerated until the

eigenvalues are all positive (except for the six zero eigenvalues).

Denote b(cF ) as the mean-square fluctuations of a protein whose inter-atom forces are

cF , where c is a constant scaling factor. Note that b(0) reduces back to the mean-square

fluctuations of the original bANMr2, where forces are not considered. To study the effect

of inter-atom forces on mean-square fluctuations, b(cF ) are computed for 1000 different

sets of random F ’s and two different scaling factors c ∈ {1, 2}.

Figure 2.1 shows the distributions of the mean-square fluctuations when the inter-

residue forces are applied. The periplasmic copper/silver-binding protein CusF of E. coli

is used for the experiment. The structure reported in the PDB (id: 2QCP) has 80

residues and composed of 5 beta strands, as shown in figure 2.1(a) in a cartoon image.

The cartoon is colored according to the crystallographic B-factor values. It shows that

loops (orange) and tails (red) are more flexible than the beta strands (blue). In (b) and

(c), the distributions of mean-square fluctuations b(F ) and b(2F ) are plotted, respectively.

In both figures, the black line represents the median of the 1000 computed B-factors at

each residue, while the gray band represents the range of B-factors that are between

25 and 75 percentiles (of the 1000 computed B-factors at each residue), and two outer

gray lines mark the boundaries of 5 and 95 percentiles, respectively. As a reference, the

B-factor bANMr2 without forces, or b(0), is plotted as the red line. b(0) is nearly the same

as the medians and consequently the two lines are mostly indistinguishable in the two

figures.

Making the flexible regions more flexible. From figure 2.1 it is seen that the

gray band that represents the range of B-factors between 25 and 75 percentiles is quite
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Figure 2.1 The effect of inter-atom forces on a protein’s mean-square fluc-
tuations. 1000 sets of inter-atom forces are applied and the variations
these forces cause on each residue’s mean square fluctuation are collected
and statistically analyzed. (a) shows a cartoon image of the protein, the
periplasmic copper/silver-binding protein CusF of E. coli (pdbid: 2QCP,
resolution: 1 Å), colored according to the crystallographic B-factors of the
Cα atoms. (b) the distributions of mean-square fluctuations as affected by
inter-atom forces. the black line represents the median of the 1000 computed
B-factors at each residue, while the gray band being the range of B-factors
that are between 25 and 75 percentiles (of the 1000 computed B-factors at
each residue), the two outer gray lines being the boundaries of 5 and 95
percentiles, and the red line being b(0), or the B-factors when forces are all
zero. (c) is the same as (b) except the magnitudes of all the forces are scaled
by a factor of 2. The blue line in (c) represents the experimental B-factors.
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narrow, closely surrounding the median line, suggesting most of the times the effect of

forces on a residue’s fluctuations is small. However, the 95 percentile line (the top line)

shows that the inter-residue forces are capable to greatly increase a residue’s fluctuation

magnitude, especially for residues that are already flexible, i.e., those at or near the

peaks. On the other hand, the 5 percentile line (the bottom line) indicates the inter-

residue forces’ effect in reducing a residue’s fluctuation magnitude is relatively much

smaller.

Figure 2.1(c) shows the same results as (b), except that the magnitudes of the inter-

residue forces are doubled (using 2F instead of F ). Interestingly, the increase in mean-

square fluctuations (i.e., the difference between the top line and the red line) at most

residues is more than doubled as a result of doubling the forces.

In summary, we have seen that, i) the forces affect the flexible regions more than

others, and ii) the forces have more of an effect in increasing a residue’s magnitude of

fluctuation than decreasing it.

The effect of inter-residue forces on improving correlations with experi-

mental B-factors. Also shown in the figure 2.1(c) is a thick blue line, which represents

the crystallographic B-factors bPDB. In the figures, bPDB is scaled by s and translated

by t to minimize its superposition error with bANMr2 (the red line):

e(s, t,bPDB,bANMr2) =
n∑
i=1

(
(bPDB)i · s+ t− (bANMr2)i

)2
, (2.21)

where (b)i is ith element of vector b, and n is the number of residues.

From figure 2.1(c) it is seen that the values of bPDB (the blue line) fall mostly within

the 5 percentile and the 95 percentile range of b(2F ), except for residues 61-65. This

implies that there may exist, for this particular protein, assignments of inter-atom forces

that can greatly improve its correlations with the experimental B-factors.
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2.3.3 Application to Other Proteins

We repeat the same analysis as above also for a dataset of eight other proteins that

have less than 50% sequence similarity to one another and whose resolutions are better

than 0.8 Å and whose lengths are from 64 to 158 amino acids, as used in [117]. These

proteins are: Type III antifreeze protein rd1 (pdb id: 1ucs) (64 residues), syntenin

Pdz2 domain (1r6j) (82 residues), high-potential iron-sulfur protein (1iua) (83 residues),

carbohydrate Binding Domain Cbm36 (1w0n) (121 residues), Lys-49 phospholipase A2

homologue (lysine 49 PLA2) (1mc2) (122 residues), cobratoxin (1v6p) (62 residues each,

two chains), bacterial photoreceptor pyp (1nwz) (125 residues), and E. Coli pyrophos-

phokinase HPPK (1f9y) (158 residues).

Figure 2.2 shows the results, from which it is seen that, common to all the proteins, the

experimental B-factors mostly fall within the boundaries of the 5 and 95 percentile of the

1000 computed B-factors when inter-residue forces are present. This suggests that inter-

residue forces may be the reason, or part of the reason for some of the observed difference

between experimental B-factors and theoretical B-factors as computed by ANMr-like

models that do not consider the effect of inter-atom forces. On the other hand, we do

not expect that inter-residue forces alone could account for all the differences between

experimental B-factors and computed B-factors. For some of the residues shown in

figure 2.2, the difference is too large to come from inter-residue forces alone. In addition,

the difference may also be due to the coarse-grained nature of ANMr-like models. The

uncertainties in experimental B-factors are another factor. Experimental B-factors are

not an exact representation of the mean-square fluctuations of residues since they are

subject to the influence of lattice disorder, crystal packing, etc. Indeed, a number of

studies that took into account the effect of crystal packing found that including the

effect of crystal packing significantly improved the fittings between experimental and

calculated B-factors [41, 45, 63, 106, 120].
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Figure 2.2 The effect of inter-atom forces on the mean-square fluctuations of
eight other proteins. This figure is the same as figure 2.1(c) except that
the proteins are different. The pdb-id for the proteins are: (a) 1UCS, (b)
1R6J, (c) 1IUA, (d) 1W0N, (e) 1MC2, (f) 1V6P, (g) 1NWZ, and (h) 1F9Y.
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2.4 Discussions

This paper presents a new theoretical result that shows how GNM and ANM can

be unified through taking into account the effect of inter-residue forces. The unification

reveals also the role of inter-residue forces in protein fluctuation dynamics. Depending

on the magnitudes and directions of the inter-residue forces, the unification presents a

continuous spectrum of models that are, to various extents, a mix of GNM and ANM.

Perceivably there may exist an optimal mix that is able to combine the strengths of the

two models in depicting protein dynamics. When no forces are assigned, the model is

reduced to ANM. An open question is whether or not there exist a way to assign the

forces systematically and realistically in such coarse-grained models.

Many elastic network models have been developed to study how a protein system re-

sponds to binding or external forces. Yilmaz and Atilgan [157] discussed how one could

insert minimal concerted fluctuations in a set of non-bonded contacts to regulate the

motion of residues at sensory positions, and how the induced changes in inter-residue

separations could be adaptively annihilated. Ming and Wall [87] modeled the interaction

between a ligand and a protein using ENM by introducing a larger spring constant and

a larger cutoff distance and discovered that binding at the native binding sites caused a

large change in protein dynamics. Zheng et al. [160, 161] introduced perturbations in the

contact spring constants to show that some residues, when their interactions with neigh-

boring residues were perturbed, affected more strongly the frequencies of the functional

modes than the other residues. They showed that these dynamically important residues

were conserved. Sacquin-Mora and Lavery [110] and Eyal and Bahar [30] computed

effective spring constants between pairs of residues by applying an external force to me-

chanically unfold a protein and found them to be in good correlation with experimental

unfolding forces. Atilgan et al [3, 4] developed a perturbation scanning method that

computes conformation changes in response to external forces. These models demon-
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strate how perturbations in spring constants and/or contact distances affect the normal

modes or how external forces induce conformation changes. In several of these models,

inter-residue forces were explicitly included in the formulation when computing how a

protein system responds to the perturbations. However, in all of these models, at the

initial equilibrium state inter-residue forces have always been set to zero. That is to say,

in all of these models, the state before any perturbation takes place contains only relaxed

springs and no inter-residue forces. The uniqueness of our work is the presence of inter-

residue forces even at the initial equilibrium state and we have studied how inter-residue

forces affect protein fluctuation dynamics at the equilibrium state.

It would be highly interesting to extend our work to see how having a different

initial equilibrium state, in which explicit inter-residues forces are present, may alter the

outcomes of the aforementioned force-related ENM studies in which inter-residue forces

were absent at the initial equilibrium state. For example, if one explicitly considers the

inter-residue forces at the equilibrium state, will they still be able to identify the same

set of dynamically conserved residues as found in [160, 161]? and how would it affect

the simulation results of mechanical unfolding presented in [30, 110]? etc.

This work thus opens a new way to study the effect of external forces on protein

fluctuations and dynamics using elastic network models. Binding is one of the most

fundamental processes in protein functions. Ligand binding exerts external forces on a

host protein, causing it to rebalance itself, in which process the host protein often makes

noticeable conformation changes, moving from the initial open form (apo) to the final

“closed” form. The closed form may display different motion patterns from the open

form. Such changes in the motion patterns are often attributed to the conformation

differences between the ligand-free state and the ligand-bound state. However, exter-

nal forces exert their influence not only by inducing conformation changes, but also by

creating strains, or inter-atom forces and/or torques, within the host protein. As our

results demonstrate here, such strains also are able to affect directly the host protein’s

fluctuation dynamics.
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One possible benefit of considering the effect of inter-atom forces is that it may pro-

vide insight into situations where there is much dynamics change but little structure

change, such as when a ligand’s binding causes little change in the conformation of the

host protein but much change in its fluctuation patterns. For example, experimental

studies on hen egg lysozyme showed the binding of several antibodies causes little con-

formation change in the host protein but significant changes in the hydrogen exchange

protection factors that are closely related to the magnitudes of local fluctuations [34, 54].

This is puzzling and difficult to understand using elastic network models whose output

depends solely on the shape and geometry of the input structures, since with such mod-

els it is generally expected that the same conformation produces the same dynamics

and little change in the conformations means little change in the fluctuations. However,

incorporating the effect of inter-residue forces into elastic network models as done here

changes this general picture. As seen in figure 2.2, the same conformations can have

different fluctuation dynamics when different inter-residue forces are applied. Under this

new paradigm, it becomes possible to interpret the aforementioned puzzle regarding an-

tibody binding using elastic network models: even though there is little conformation

change taking place to interpret the significant changes in fluctuations, it is possible

that the observed changes in fluctuations are caused by the strains created by the ligand

binding. Other feasible interpretations of this phenomenon also exist [34].

It is worth noting that FSM as of now is not yet readily applicable to dynamics studies

of real protein systems, due to the fact that a systematical way for assigning inter-residue

forces is still lacking. The purpose of our experiment with artificial random forces is not to

establish FSM as a new mature model. Instead, the experiment serves only to illustrate

to what extent inter-residue forces may potentially affect B-factor computations. The

next challenge is thus to find a way to assign inter-residue forces systematically and

meaningfully and correctly for a given structure. This is an important open question

and is beyond the scope of this work. Once this problem is solved, FSM may then be

applied to tackle the aforementioned problems.
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Inter-residue forces may have a significant role in better understanding protein con-

formation changes and other function related motions. We plan to investigate this in the

future after we have found a way to systematically estimate inter-residue forces.
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CHAPTER 3. BRIDGING BETWEEN NMA AND

ELASTIC NETWORK MODELS

A paper published in Proteins: Structure, Function, and Bioinformatics

http://dx.doi.org/10.1002/prot.24571

Hyuntae Na23 and Guang Song234

Abstract

Normal mode analysis (NMA) has been a powerful tool for studying protein dynam-

ics. Elastic network models (ENM), through their simplicity, have made normal mode

computations accessible to a much broader research community and for many more bio-

molecular systems. The drawback of ENMs, however, is that they are less accurate than

NMA. In this work, through steps of simplification that starts with NMA and ends with

elastic network models we build a tight connection between NMA and elastic network

models. In the process of bridging between the two, we have also discovered several

high-quality simplified models. Our best simplified model has a mean correlation with

the original NMA that is as high as 0.88. In addition, the model is force-field inde-

pendent and does not require energy minimization, and thus can be applied directly to

experimental structures. Another benefit of drawing the connection is a clearer under-

1This chapter is reprinted with permission of Proteins 2014, 82(9), 2157–2168.
2Graduate student and Associate Professor, respectively, Department of Computer Science, Iowa

State University.
3Primary researchers and authors.
4Author for correspondence.
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standing why elastic network models work well and how it can be further improved. We

discover that ANM can be greatly enhanced by including an additional torsional term

and a geometry term.

3.1 Introduction

Protein dynamics has long been recognized to be critical to protein functions. It also

has been recognized that function related motions occur mostly along a small number

of collective coordinates, the normal modes. Though protein conformation changes are

often anharmonic in nature, it has been shown that conformation changes mostly take

place along one or a few harmonic normal modes. Normal mode analysis (NMA) thus

has been a popular and powerful tool for studying protein motions and dynamics since

the 80’s. [17, 38, 72]

To apply NMA to compute normal modes, a given structure has to be first energeti-

cally minimized. This minimization process uses a complex semi-empirical potential and

takes a significant amount of computer time and memory, especially for large systems.

Moreover, the minimized structure usually deviates from the original structure, partly

due to the fact that the minimization is mostly done in vacuo, [81] and partly due to the

imperfection in the force field potentials.

In mid 90’s, a seminal work by Tirion [139] showed that a much simpler potential,

a single parameter potential, was sufficient to reproduce the slow dynamics in a quality

comparable to that by a detailed, complex potential. Her work thus greatly simplified

the process of computing normal modes and opened the way for a flurry of research

activities in normal mode computations, analysis, and applications. [2, 8, 25, 43, 47, 58,

63, 66, 70, 76, 77, 94, 108, 121, 127, 129, 130, 149, 153, 154, 159, 161, 163] Many models

have been developed to compute normal modes and applied to study protein dynamics.



www.manaraa.com

27

There is no doubt that one of the main contributors to the popularization of normal

mode computations and their success is simplicity. The simplicity, achieved by using

a much simpler potential that requires no energy minimization, certainly presents a

great advantage over the original NMA. However, with the simplification also comes a

loss of accuracy. While there is significant gain from exploiting the simplicity of these

simplified models and from what they can do, there are few works that examine these

models’ accuracy in comparison to the original NMA. [60, 163]

The validity of Tirion’s simplification of NMA’s full potential with a single-parameter

potential, as well as that of many others, was justified a posteriori, for example, by

showing that the slow dynamics computed by the simplified model matches with that

by NMA using a full potential. [139] It is often not obvious why such simplified models

should work, though some insightful comments and plausible explanations have been

given. [137]

In this work, we bridge NMA and elastic network models and in so doing have devel-

oped a different approach to derive simplified NMA models. Instead of creating from the

beginning a new model and justifying it a posteriori, we start with the original NMA,

identify what is essential to its accuracy, and then take reasonable steps of simplification.

The advantages of proceeding in this way are several. First, in so doing we are able to

simplify NMA while preserving its essential components and keeping track of its accu-

racy. Second, in this process of starting with NMA, simplifying it in steps, and finally

arriving at the commonly used elastic network models, a bridge is being built connecting

all-atom NMA and elastic network models. This bridge is an important way to show the

tight connection between usual atomic models and the elastic network models. Thirdly,

the connection clearly reveals the reasons why elastic network models work well and in

what ways they can be improved to have a better agreement with the original NMA.
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3.2 Methods

In this section, we will first give an overview of NMA, and then describe in details

the steps we take to simplify it.

3.2.1 Overview of NMA

NMA uses a complex all-atom force-field potential, such as Amber, [145] CHARMM, [83]

etc., that contains many interaction terms and can be divided into two-body, three-body,

or four-body interactions. Two-body interactions include bond stretching, van der Waals

interactions, and electrostatic interactions. Three-body interactions include the bond an-

gle interactions, while the four-body interactions are those via dihedral angles. Before

applying NMA to a protein system to study its normal mode motions, a given input

structure has to be first energetically minimized. This minimization process takes a sig-

nificant amount of computer time and memory, especially for large systems. Moreover,

the minimized structure usually deviates from the original structure.

It is important to realize that at the minimized structure, even though the whole

system is at equilibrium and the net force at each atom is brought to be zero, the inter-

atomic forces are not necessarily zero. For example, there are atom pairs that interact

only through non-bonded interactions, such as the electrostatic interactions, and the

forces they exert on each other persist even at the equilibrium state.

Once the input structure is energetically minimized, the Hessian matrix can be writ-

ten out, from which normal modes can be obtained by solving for its eigenvalues and

eigenvectors. As the second derivative of the force-field potential, Hessian matrix de-

pends directly on force field parameters, many of which are the spring constants of

various kinds, such as bond stretching spring constants, bond angle spring constants,

torsional spring constants, and improper angle spring constants, etc.
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A key realization in our simplification of NMA is that Hessian matrix depends not

only on these spring constants, but also on the inter-atomic forces or torques. Whether

it is of a two-body potential, or a three-body or four-body one, the following derivation

shows that the Hessian matrix, as a second derivative of the potentials, can always be

written as a summation of a spring-based term and a force-based term. The spring-

based term specifies the contributions from the force-field spring constants, while the

force-based term specifies contributions from the inter-atomic forces or torques, which

as we reasoned above, are not zero even at the equilibrium structure.

3.2.2 NMA Hessian Matrix as a Summation of Spring-Based Terms and

Force-Based Terms

As aforementioned, the first key realization in simplifying NMA is that NMA Hessian

matrix, as a second derivative of the potential, consists of the two kinds of contributions.

One is related to force field spring constants while the other the inter-atomic forces or

torques.

First, let us consider the three-body potential, specifically that of the bond angle

interactions. Let θ = 6 ijk be the instantaneous angle formed by three atoms i, j, and

k. The bond angle potential of atoms i, j, and k is defined as Vθ = 1
2
kθ(θ − θ0)2, where

kθ is the bond angle spring constant, and θ0 is the equilibrium angle. The block Hessian

matrix Hθ for the bond angle interaction is a 9× 9 second derivative matrix of Vθ with

respect to x, y, and z coordinates of atoms i, j, and k. Write one component ∂Vθ
∂Xi∂Yk

of

Hθ as follows:

∂Vθ
∂Xi∂Yk

=
∂

∂Yk

(
∂Vθ
∂θ

∂θ

∂Xi

)
=

∂2Vθ
∂θ2

∂θ

∂Xi

∂θ

∂Yk
+
∂Vθ
∂θ

∂2θ

∂Xi∂Yk

= kθ ·
∂θ

∂Xi

∂θ

∂Yk
− fθ ·

∂2θ

∂Xi∂Yk
, (3.1)

where fθ = −∂Vθ
∂θ

is the bending force (which is actually a torque). Notice that Eq. (3.1)
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is a combination of the physical terms (kθ and fθ) and geometric terms (the partial

derivatives), which represent the projection of physical interactions into a particular

coordinate system. In a similar fashion, the rest of the elements of the block Hessian

matrix Hθ can be written out using kθ and fθ. Finally, the block Hessian matrix Hθ can

be rewritten as a summation of two terms:

Hθ = kθ ·Hθ|kθ − fθ ·Hθ|fθ , (3.2)

where Hθ|kθ and Hθ|fθ are 9× 9 matrices that are fully determined by protein geometry

and atom coordinates, kθ is a force field parameter, and fθ = −kθ(θ − θ0) is the torque

acting on the bond angle.

Now for the four-body interactions, let Hφ be the 12 × 12 block Hessian matrix for

the torsional interaction among four atoms i, j, k, and l. Let kφ = ∂2V
∂φ2

and fφ = −∂V
∂φ

be the torsional spring constant and the torsional bending force (torque), respectively.

Similar to Eq. (3.2), the Hessian matrix Hφ can be written as a function of kφ and fφ:

Hφ = kφ ·Hφ|kφ − fφ ·Hφ|fφ . (3.3)

Since V (φ) = Kφ(1−cos(n(φ−φ0))) in most force fields, where Kφ and φ0 are force field

parameters, and n is the multiplicity, kφ = ∂2V
∂φ2

= n2Kφ cos(n(φ− φ0)).

Likewise, the Hessian matrix Hl for two-body interactions between a pair of atoms i

and j can be determined:

Hl = kl ·Hl|kl − fl ·Hl|fl . (3.4)

There are usually three types of two-body interactions in an all-atom potential, i.e.,

bond stretching, van der Waals interactions, and electrostatic interactions, and thus

three different kl’s. For the bond stretching potential Vbond, which is usually expressed

as Vbond = Kbond(r − r0)2, we have,

kl(bond) =
∂2Vbond

∂r2
= 2Kbond. (3.5)
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For the van der Waals term, since VvdW = ε(( r0
r

)12 − 2( r0
r

)6), we have,

kl(vdW) =
∂2VvdW

∂r2
=

12ε

r2

(
13
(r0

r

)12

− 7
(r0

r

)6
)
. (3.6)

Lastly, for the electrostatic term, since Velec =
332qi·qj
rD

, where qi is partial charge of atom

i, and D is the dielectric constant and is set to be 1, kl is thus:

kl(elec) =
∂2Velec

∂r2
=

2 · 332qi · qj
r3

=
664 · qi · qj

r3
. (3.7)

Finally, given n the number of atoms, the 3n× 3n full Hessian matrix HNMA for the

whole system can be written as a summation of a spring constant based term HNMA
spr and

a force/torque based term HNMA
frc :

HNMA = HNMA
spr +HNMA

frc , (3.8)

where

HNMA
spr =

∑
θ∈Θ

kθHθ|kθ +
∑
φ∈Φ

kφHφ|kφ +
∑
l∈L

klHl|kl ,

HNMA
frc = −

(∑
θ∈Θ

fθHθ|fθ +
∑
φ∈Φ

fφHφ|fφ +
∑
l∈L

flHl|fl

)
,

where Θ, Φ, and L are the sets of angular, dihedral, and pairwise interactions, respec-

tively.

3.2.3 First Step of Simplification: the Spring-Only NMA

A second key realization in simplifying NMA is that force/torque-based terms con-

tribute much less than their corresponding spring-based terms to protein fluctuation

dynamics.1 Consequently, omitting them incurs only a small deterioration to a model’s

1 In (Na and Song, 2013, A Natural Unification of GNM and ANM, under review), we show that the
effect of any inter-atomic force fi,j between atoms i and j is about the same as adding an additional

spring whose constant is keff
i,j =

fi,j
ri,j

, where ri,j is the distance between atoms i and j. This effective

spring constant keff
i,j is usually much weaker than the actual spring ki,j between atoms i and j. Take

the bond stretching term for example, fi,j = ki,j ·∆ri,j . Therefore, the ratio
keff
i,j

ki,j
=

∆ri,j
ri,j
� 1. Similar

arguments can be made for other force terms.
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accuracy. On the other hand, one huge gain in omitting the force/torque-based terms

is that it becomes much easier to write down the Hessian matrix, since forces are more

difficult to be estimated correctly than the spring constants. The absence of forces in a

model also makes energy minimization unnecessary.

Therefore, our first step of simplification is to use a spring-only NMA. We name this

model sbNMA, or spring-based NMA.

sbNMA assumes that all forces and torques are zero. Therefore,

HsbNMA = HNMA
spr =

∑
θ∈Θ

kθHθ|kθ +
∑
φ∈Φ

kφHφ|kφ +
∑
l∈L

klHl|kl , (3.9)

where kl represents all the two-body spring constants and includes bond stretching spring

constants kl(bond) (see Eq. (3.5)), spring constants due to van der Waals interactions

kl(vdw) (see Eq. (3.6)), and spring constants due to electrostatic interactions kl(elec)

(see Eq. (3.7)).

Like elastic network models, sbNMA is a fully spring-based model. However, in

order to apply sbNMA to compute normal modes and mean-square fluctuations, another

step of approximation is needed. This is because sbNMA as of now contains springs

with negative spring constants. Negative spring constants can cause the input protein

structure to become unstable by setting it at a saddle point. Mathematically, the Hessian

matrix will have negative eigenvalues.

To set an input structure at equilibrium and to avoid having negative eigenvalues in

the sbNMA Hessian matrix, the following approximations are made.

First, sbNMA assumes that the input structure has the equilibrium values for all its

torsional angles, i.e., φ = φ0, as normally done in Go-like potential. [125] Therefore,

kφ = n2Kφ cos(n(φ− φ0)) = n2Kφ. (3.10)

This will guarantee that kφ are always positive. It also removes the dependence on the

force-field parameter φ0.
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Secondly, it is possible that spring constants due to van der Waals interactions,

kl(vdw) (see Eq. (3.6)), and spring constants due to electrostatic interactions, kl(elec)

(see Eq. (3.7)), may be negative.

Figure 3.1(A) shows the distribution of the spring constants for electrostatic interac-

tions, kl(elec), between all pairs of atoms. Each dot in the figure represents one spring

constant kl(elec) between one pair of atoms, computed using Eq. (3.7), with the coor-

dinates taken from the minimized structure of one of the proteins in the dataset (pdb-

id: 2XRH.pdb). The minimization has been done using the Tinker program with the

CHARMM22 force field. The partial charges, qi and qj in Eq. (3.7), of all the atoms are

taken also from CHARMM22 force field. Similarly, Figure 3.1(B) shows the distribution

of the spring constants for van der Waals interactions between all pairs of atoms, com-

puted using Eq. (3.6) and the same minimized structure. All van der Waals parameters,

which are atom-specific, are taken from CHARMM22 force field.

Figure 3.1 The distributions of (A) electrostatic spring constants kl(elec) and
(B) van der Waals spring constants kl(vdW) over rij. The distri-
butions are based on protein 2XRH.pdb. Other proteins have a similar
distribution. Most of the contributions from van der Waals interactions
come from the range where ri,j is around or less than 4 Å, where kl(vdW) is
large. kl(elec) is nearly symmetric, having nearly equal numbers of positive
and negative spring constants.

From Figure 3.1 it is seen that the magnitudes of electrostatic interactions-based

spring constants kl(elec) appear to be fairly large, especially at the short range, but are
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a few times smaller than those of van der Waals interactions. On the other hand, kl(elec)

decreases more slowly as the separation distance increases and has a longer interaction

range than kl(vdW), as expected. Another contrast between the two is that, while

the van der Waals based spring constants are mostly positive, electrostatic interactions-

based spring constants have nearly equal number of positive and negative values and

their distributions appear to be nearly symmetric along the abscissa (see Fig. 3.1(A)).

The net effect of these quite large positive and negative spring constants on protein

fluctuations however are smaller than they appear as they mostly cancel out each other.

This may not be obvious at atomic level, but if we zoom out a little and look at a

protein at the residue level, we see most residues as single units have a net charge of

zero. Therefore, the strength of the electrostatic interactions among most of the residues

is on the order of dipole-dipole interactions or even multi-pole multi-pole interactions,

which are much weaker. Consequently, the contribution of the electrostatic interactions

to the Hessian matrix and to a protein’s fluctuations is much smaller than what the

magnitudes of atomic-level spring constants would suggest. Secondly, at short ranges

(i.e., small Rij) where their contributions are large, they are dominated by the even

larger spring constants from the van der Waals (Fig. 3.1(B)). For these reasons and

to avoid negative spring constants, we choose not to include the electrostatic term in

sbNMA. Later experimental results where a strong correlation between sbNMA and

NMA is found (see the first row in Table 3.1) further confirm that this is a reasonable

approximation.

Notice that the van der Waals based spring constants kl(vdW) (see Fig. 3.1(B)) also

may become negative. However, most of this happens when r is large, where the magni-

tude of ki,j is extremely small. Most of the contributions from van der Waals interactions

come from when r is around or less than r0, the equilibrium distance between a pair of

atoms and which is usually near or below 4 Å. Thus, we set kl(vdW) = max(kl(vdW), 0),

to ensure that kl(vdW) is non-negative.
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Table 3.1 The effect of different modelings of protein geometry on the fluctuation dy-
namics

Case Hgeom Hφ Hnbond corr. with NMA
0 (sbNMA) ffa ff ff 0.878

1 infb ff ff 0.867
2 100×constc ff ff 0.871
3 0.01×const ff ff 0.816
4 const ff ff 0.878

aff stands for force field, where rigidity of bond stretching, bond angle terms, etc. are
modeled according the force fields;
binf stands for infinity, where all protein geometry related spring constants are set to be
infinity, i.e., are set to be totally rigid;
cconst means a force-field independent, atom-type independent uniform constant values
are used. For example, 340 Kcal/mol/Å2 is used for all the bond stretching terms.

With above approximations to remove negative spring constants, HsbNMA becomes,

HsbNMA = kθ ·Hθ|kθ +
(
n2Kφ +Kimproper

)
·Hφ|kφ + (kl(bond) + kl(UB) + kl(vdW)) ·Hl|kl ,

(3.11)

where the improper angle and the Urey-Bradley terms are also considered and Kimproper

and kl(UB) represents their spring constants, respectively.

Our work in [77] details how Hθ|kθ , Hφ|kφ , and Hl|kl can be computed. To compute

HNMA, one may use software packages such as Amber, [111] Charmm, [18] Tinker, [102]

or Gromacs, [103] etc.

3.2.4 Further Simplification of NMA: Approximating the Force Field Pa-

rameters with a Small Set of Constants

sbNMA as formulated above is a fully spring-based model like elastic network models.

However, like NMA, it still uses extensive parameters from a force field, such as bond

stretching spring constants, bond angle spring constants, parameters for van der Waals

interactions, etc.
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Our goal in this section is to identify what are the essential ingredients of sbNMA and

what are not, and then to simplify the model while keeping all of its essential ingredients.

The process of doing this (see the Results section) leads us to approximate the extensive

force field parameters with a small set of force-field independent constants. This is

important in making the tight connection between NMA and elastic network models.

Our hypothesis is that, i) bond stretching, bond angle, and the improper angle terms

have large spring constants already and variations in their values should have only minor

effect on the fluctuation dynamics; ii) torsional interactions, on the other hand, have

much smaller spring constants and thus much of a protein flexibility should come from

the torsional degrees of freedom; iii) the effect of non-bonded interactions on protein

fluctuations is mainly contributed by the van der Waals term, while the contribution

from electrostatic is smaller. Non-bonded interactions further reduce and modify a pro-

tein’s flexibility that originates mostly from the torsional degrees of freedom. A proper

modeling of the non-bonded interactions should be important.

Specifically, we make the following simplifications:

1. use one and the same Kbond, Kθ, Kφ, Kimproper, or KUB for all proteins;

2. use a single generic set of van der Waals radii, such as the Bondi radii, [12] for van

der Waals interactions.

A significant advantage of making this simplification is that the model is now force-

field independent. We name this further simplified model ssNMA, or simplified spring-

based NMA, to distinguish it from sbNMA. ssNMA as of now is highly similar to other

elastic network models, and as with elastic network models, one can write down the

ssNMA Hessian matrix without resorting to a force-field. ssNMA and sbNMA represent

intermediate models that bridge NMA and elastic network models and show how they

are connected. As will become clear in the Results section, the connection between two
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sheds insights on their relationship and allows one to see how elastic network models

such as ANM can be further improved so that it matches better with NMA.

3.2.5 ANM Model

One of the most widely used elastic network models is Anisotropic Network Model, [2]

or ANM. In ANM, the spring constant between atoms i and j is defined as follows:

kANM
i,j =

1, if ri,j < rcutoff

0, otherwise,
(3.12)

where ri,j is the Euclidean distance between atoms i and j, and rcutoff is the cutoff

distance, which is a parameter in the model. In this work, to draw the tight connection

between NMA and elastic network models, we use the fine-grained ANM, where all the

atoms are included and are mass-weighted.

3.3 Results and Discussions

3.3.1 The Close Match between sbNMA and NMA

We first apply the sbNMA model to a large number of proteins and show that the

fluctuation dynamics produced by sbNMA matches closely with that of NMA. To exclude

the potential bias created by crystal packing or lattice disorder on protein fluctuations,

the atomic fluctuations computed from NMA and sbNMA are compared with each other

and not with the experimental B-factors. However, interested readers may refer to Sup-

plemental Materials for the performance of the models developed in this work in their

correlations with experimental B-factors. Such correlations must be interpreted with

caution as experimental B-factors are strongly affected by crystal packing, lattice order,

etc., which are not considered in these models.

To compute the fluctuations, all the structures are first energetically minimized using

the Tinker program [102] with the CHARMM22 force field. [83] The minimized structures
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are then used by NMA and sbNMA, and later on, ANM model, to compute the mean-

square fluctuations. Force field parameters in CHARMM22 are used in computing the

sbNMA Hessian matrix.

Let M be the n× n diagonal mass matrix, I be the 3× 3 identity matrix, and ⊗ be

the operator of the Kronecker product. Denote bNMA and bsbNMA as the mean-square

fluctuations by NMA and sbNMA, respectively. The following procedure is used to

compute them:

1. Use Tinker to run the energy minimization and determine the minimized structure

C, whose potential energy as defined by CHARMM22 is locally minimized;

2. Compute the mean-square fluctuations bNMA using the Hessian matrix (provided

by Tinker) of the minimized structure;

3. Compute the sbNMA Hessian matrix HsbNMA of C, whose parameters are from

CHARMM22;

4. Determine frequencies fi and modes mi of HsbNMA in the mass-weighted Cartesian

coordinate as follows, where i = 7, 8, ..., 3n:

(a) H̃sbNMA ← (M1/2 ⊗ I3)−1HsbNMA(M1/2 ⊗ I3)−1;

(b) 〈fi, m̃i〉 ← ith eigenvalue and eigenvector of H̃sbNMA;

(c) mi ← (M1/2 ⊗ I3)−1m̃i;

5. Compute the mean-square fluctuations bsbNMA using fi and mi;

6. Compute the correlation between bNMA and bsbNMA.

The procedure is repeated on a dataset of 177 proteins that have less than 30% sequence

similarity. All these 177 proteins are high-resolution crystal structures, containing the

ANISOU entries for anisotropic B-factors, and whose sizes are greater or equal to 60

residues but less than 150, due to the computational costs of running NMA. Structures
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that fail to pass Tinker’s energy minimization or Hessian matrix computation procedure

are excluded. The pdb-id’s of the whole list of the proteins are given in the Supporting

Information. Figure 3.2 shows the histogram of the root mean square deviations from

the crystal structures after the energy minimization. It is seen that for most proteins,

the structure deviation falls within 2-3 Å, but some are further away.

Figure 3.2 The histogram of the Cα root mean square deviations from the
crystal structures after the energy minimization for the 177 pro-
teins used in this study.

The high correlations between bNMA and bsbNMA are shown in Fig. 3.3 as a histogram.

The mean correlation value is as high as 0.88, indicating that sbNMA represents a high-

quality approximation to NMA. The results also confirm that the spring-based terms in

the NMA Hessian matrix indeed have a much bigger contribution than the force-based

terms.

3.3.2 Identifying the Essential Components of sbNMA and Further Simpli-

fication

In a regular force field for proteins, there are hundreds and perhaps even thousands

of parameters. For example, there are over a hundred finer atom types in most force

fields. The fine distinctions among atom types and the interactions that depend on

them are considered necessary for accurate molecular dynamics simulations and studies.
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Figure 3.3 The histogram of the correlations between the mean-square fluc-
tuations computed by NMA and by sbNMA. The mean correlation
is 0.88. 177 proteins are used.

However, such fine distinctions may not be necessary in our model where the main aim is

to produce high-quality normal modes that resemble closely those of NMA. Wherever the

fine distinctions are unnecessary for this purpose, our model can be simplified without

sacrificing any or much accuracy. Indeed, the model will be easier to use if only a small

number of parameters are needed and the preparation process for the computation of

the normal modes is simplified. This simplification is also important in making the tight

connections between NMA and elastic network models.

To this end, we first divide all the terms that contribute to sbNMA Hessian matrix

into three groups. Let Hφ denote the part of Hessian matrix contributed by the torsional

term, Hnbond that by the non-bonded terms, specifically the van der Waals term. Finally

let Hgeom denote the rest of terms, which include the bond stretching, bond angle, Urey-

Bradley, and the improper terms. The full Hessian matrix is the sum of all these three

terms, i.e.,

H = Hgeom +Hφ +Hnbond. (3.13)

Note that the terms in Hgeom are mainly for maintaining protein geometry. They spec-

ify interactions within parts of a protein that are mostly rigid and thus large spring

constants are used. The inclusion of this term is important for representing parts of a
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protein as nearly rigid while rendering the rest as flexible. Indeed, A protein’s flexibility

comes mainly from the remaining degrees of freedom, the torsional rotations. Torsional

rotations are not totally free. Hφ specifies the effect of angular springs that constrain

torsional rotations. As will be seen later, a proper modeling of Hφ is essential for accu-

rately reproducing protein flexibility. Unfortunately, most contact-based protein models,

such as most elastic network models, do not have this term. Lastly, Hnbond represents

the contributions of non-bonded interactions. Non-bonded interactions further constrain

a protein’s fluctuations by reducing their scales and modifying the fluctuation patterns.

Without them a protein’s fluctuations would be totally characterized by a sum of many

independent torsional rotations/fluctuations. Non-bonded interactions cause these oth-

erwise independent torsional rotations to become entangled and the final fluctuation

patterns of the system to become more complex. A proper modeling of non-bonded

interactions is thus important, since whatever non-bonded interactions are employed

specify how the torsional rotation modes are to be mixed. Most elastic network models

use uniform cutoff distance and uniform springs to define non-bonded interactions. We

will show below that using proper van der Waals radii to define non-bonded interactions

can bring significantly better fluctuation dynamics.

In the following, we will show the quantitative effect of these three terms on the

fluctuation dynamics. This will allow us to identify the most essential ingredients of

a good model. Intending to simplify the model, we will examine whether or not these

three terms can be well approximated by force field independent constant values. If such

an approximation can be done, it will greatly simplify NMA and connect it with elastic

network models.

Tables 3.1-3.2 give the comparisons among the cases where the three different terms

are approximated with constant values. Table 3.1 examines the effect of different mod-

elings of Hgeom, the protein geometry related terms, on the fluctuation dynamics. The

first row, where all the terms take force field values (ff), represents the un-simplified
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sbNMA. The rows below list different approximations of the Hgeom term. “const” means

that a single force-field independent, atom-type independent uniform spring constant is

used. For example, a single spring constant 340 Kcal/mol/Å2 is used for all the bond

stretching terms, 45 Kcal/mol/rad2 for all bond angles, 70 Kcal/mol/rad2 for all the

impropers, and 10 Kcal/mol/Å2 for Urey-Bradley. These values are estimated averages

over the ranges of values that are used in the CHARMM force field [83] for Kbond, Kθ,

Kimproper, and KUB. The results presented in this paper are quite insensitive to these

parameters. Other force fields, such as Amber [145], having force field parameters in

similar ranges, would render similar estimated averages. That is why we say our param-

eters are force-field independent. It is clearly seen from Table 3.1 that approximation

using constant values as these gives nearly the same results as the otherwise force field

parameters. Using much stronger springs (100 times more or even infinity, i.e., fully

rigid) and much weaker springs worsens the result.

Table 3.3 explores the effect of different modelings of the torsional term on the fluctu-

ation dynamics. Here the approximation “const” means using a force-field independent,

atom-type independent uniform constant values for kφ, which is 1 Kcal/mol/rad2. The

multiplicity n is set to be 1. Similar to the geometry-related term Hgeom, approximating

all the torsional terms with a single parameter produces nearly the same results as using

the force field parameters. The gain is great simplification. A torsional spring constrains

the torsional motions and its presence is highly important for accurately reproducing

protein dynamics. Its importance tends to be under-estimated, as many contact-based

protein models do not include a torsional term. Its importance is clearly demonstrated in

Table 3.3, where a significant deterioration is seen when the torsional term is weakened

or even ignored.

Table 3.2 examines the effect of different modelings of the non-bonded term on the

fluctuation dynamics. Again “ff” stands for force field, which uses many fine atom types

(can be over 100) and thus many different van der Waals radii, one for each atom type.
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Table 3.2 The effect of different modelings of the non-bonded term on fluctuation dy-
namics

Case Hgeom Hφ Hnbond corr with NMA
6 const const ffa 0.860
7 const const const vdWb 0.881
8 const const vdW contactsc 0.863
9d ∼conste const ANM

f 0.806

aff stands for force field, which uses many fine atom types and thus many different van
der Waals radii, one for each atom type;
bconst vdW means a single van der Waals radius for each major type of atoms, namely
O, H, N, C, etc., using the widely-used Bondi radii;
cvdW contacts means the same Bondi radii are used only to define interacting pairs, or
contacts, while the interaction strength is set to be a constant value of 1;
dCase 9 represents a standard ANM plus an explicit geometry term and a torsional term;
e∼const means almost the same as const. This is because ANM itself has a weak (much
weaker than const) geometry term, since it implicitly considers 1-2 and 1-3 bonded in-
teractions but their spring constants are only 1;
fANM means the non-bonded interactions, including 1-4 interactions, are specified
by ANM model, which uses a cutoff distance of 4.5 Å and a spring constant of 1
Kcal/mol/Å2.

“const vdW” means approximating the non-bonded interactions with a single set of van

der Waals radii, one for each major atom type, namely O, H, N, C, etc.. Bondi radii [12]

are used. “vdW contacts” uses the same set of van der Waals radii as “const vdW”,

but only to define interacting pairs, or contacts, while the interaction strength is set to

be constant, which is 1. “ANM” in case 9 (see the last row of Table 3.2) means that

the non-bonded interactions are specified by ANM model. Case 9 represents a standard

ANM plus an explicit geometry term (Hgeom) and a torsional term (Hφ). Though the

standard ANM has an implicit geometry term since it considers 1-2 and 1-3 interactions,

their springs are much weaker than those in “const” and their contributions are thus are

negligible. Therefore, the difference between case 9 and the rest of the cases in Table 3.2

comes primarily from their difference in non-bonded interactions.
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Table 3.3 The effect of different modelings of the torsional term on fluctuation dynamics

Case Hgeom Hφ Hnbond corr with NMA
4 const ffa ff 0.878
5 const 0.01×constb ff 0.435
6 const const ff 0.860

aff stands for force field, where the torsional interactions are modeled according to the
force fields, which use many different torsional spring constant values;
bconst means a single force-field independent, atom-type independent spring constant is
used, which is 1 Kcal/mol/rad2. The multiplicity n is set to be 1.

The first observation from Table 3.2 is that non-bonded interactions specified by the

force field can be well approximated by a single set of van der Waals radii, and a single ε,

which is set to be −0.1 Kcal/mol. Another observation is that non-bonded interactions

modeled by ANM are less accurate. Lastly, the effect of van der Waals interactions

is mostly captured by the interaction pairs they define. Interestingly, the interaction

strength kij, as shown in Fig. 3.1(B), when approximated by a single uniform value of 1

(as in “vdW contacts”) did not deteriorate the correlations much.

Models such as ANM are purely contact-based models. In ANM, the bonded terms

are treated in the same way as non-bonded, both of which use a uniform spring constant

of 1. To investigate what effects an explicit protein geometry term (Hgeom) and/or a

torsional term (Hφ) may have on such models, and to make the connection between

ANM and NMA, we add these two terms to ANM and compute the changes in the

fluctuation dynamics. The results are given in Table 3.4, from which it is seen that

adding a simple torsional term greatly improves the ANM model. Having an explicit

protein geometry term helps too, but to a smaller extent.

In summary, we conclude that the two most important ingredients in a good model of

protein fluctuation dynamics are the torsional term and the non-bonded van der Waals

term. This is not surprising since most of a protein’s flexibility comes from the torsional

degrees of freedom. The non-bonded interactions modify protein motions that otherwise
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Table 3.4 The effects of a strong explicit bonded term and/or a torsional term on ANM
model.

Case Hgeom Hφ Hnbond corr with NMA
9a ∼constb const ANM 0.806
10 ∼const 0 ANM 0.504
11 infc const ANM 0.799
12 inf 0 ANM 0.659
13 ANMd const ANM 0.789

14 (ANM) ANMd 0e ANM 0.465

aCase 9 represents a standard ANM plus an explicit geometry term and a torsional term;
b∼const means almost the same as const. This is because ANM itself has a weak (much
weaker than const) geometry term, since it implicitly considers 1-2 and 1-3 bonded
interactions but their spring constants are only 1;
cinf stands for infinity, where all protein geometry related spring constants are set to be
infinity, i.e., are set to be totally rigid;
dANM’s geometry term. It includes 1-2 and 1-3 interactions whose spring constants are
1;
eANM does not have an explicit torsional term. It has 1-4 interactions but they are
taken into account in the Hnbond term along with the rest of non-bonded interactions.

would be contributed solely by the torsional degrees of freedom. Different models of non-

bonded interactions represent different ways in which the fluctuations are modified. A

proper modeling of the non-bonded interactions is thus critical for properly reproducing

a protein’s fluctuation dynamics. The rest of the terms, which serve mostly to maintain

protein geometry, are nearly rigid and are often treated as fully rigid in many models.

3.3.3 The Best Simplified Model

The results from Tables 3.1-3.4 clearly show that the best simplified model is the one

that uses a single set of constant van der Waals radii for the non-bonded interactions

(Hnbond) and constant values for the geometry term and the torsional term, as highlighted

in bold in the second row of Table 3.2. We denote this model as ssNMA, or simplified

spring-based NMA. Table 3.5 lists all the parameters used in ssNMA, divided into three

categories, i.e., protein geometry related, torsional, and non-bonded.
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Table 3.5 A summary of all the parameters used in the simplified ssNMA modela

Hgeom Hφ Hnbond

Kb = 340, Kφ = 1, ε = −0.1, rH = 1.2,
Kθ = 45, n = 1 rN = 1.85 (1.55b),
Kimproper = 70, rO = 1.70 (1.40b),
KUB = 10 rC = 1.90, rS = 2.0

aThe units are Kcal/mol/Å2 forKb andKUB, Kcal/mol/rad2 forKθ andKφ andKimproper,
Kcal/mol for ε, and Å for all radii;
bThe value in parentheses is for 1-4 interactions.

Connecting Elastic Network Models with NMA. The contributions of these

three categories to the quality of a model are illustrated in Fig. 3.4, where ANM, an

elastic network model, is used as the base model to show how the model can be enhanced

to approach NMA as more terms are added or refined. Specifically, adding a proper

geometry term to ANM marginally improves it. Adding both a geometry term and a

torsional term significantly improves ANM. We name this model eANM, or enhanced

ANM. A further improvement over eANM is achieved by replacing its ANM-based non-

bonded term with a more accurate van der Waals based non-bonded term, which is the

ssNMA model. Having a correlation value with NMA that is nearly 0.9, ssNMA is our

best simplified model and uses only a few parameters. Like other elastic network models,

ssNMA is force-field independent and does not require energy minimization. ssNMA has

a similar performance to sbNMA, which is the same as ssNMA except that it is force-

field dependent and uses extensive force field parameters. Lastly, on the last column

of the figure, when adding the force-based terms back to sbNMA, we have the original

NMA. Because of the force-based terms, energy minimization becomes necessary in order

to bring an input protein system to equilibrium. Based on the requirement for a force

field and/or energy minimization, the models listed in Fig. 3.4 are divided into three

classes. Class I is the elastic network models, which require neither a force field nor

energy minimization. Class II includes models such as sbNMA, which do not require
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energy minimization but a force-field. NMA belongs to class III, which requires both a

force field and energy minimization.
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Figure 3.4 From ANM to NMA: the roles of three major terms (namely protein
geometry, torsional, and non-bonded) to protein fluctuations and the extent
of their contributions in improving ANM-like models to become NMA-like
models. All evaluations are done by comparing with NMA, specifically cor-
relations in mean-square fluctuations.

3.4 Conclusions

Normal mode analysis (NMA) is one of the few powerful tools for studying protein

dynamics. However, computing normal modes has been greatly hindered by the cum-

bersome energy minimization process needed to bring a structure to equilibrium before

NMA can be applied. Moreover, the minimized structure is often a few angstroms away

from the input structure.

Elastic network models, due to their simplicity, have made normal mode computations

much more accessible, to a much broader community, and for many more bio-molecular

systems, even for large systems such as ribosome, [146] nuclear pore complex, [75] etc.

Compared to NMA, the weakness of elastic network models is that they are less accurate.
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The objective of this work is to bridge NMA and elastic network models and to

make the strong connection between the usual atomic models that use full force fields

and the elastic network models that use simplified potentials. The connection between

NMA and elastic network models is made in the following way. Starting with NMA,

we first identify what is essential to its accuracy, and then take steps of simplification,

with the goal of simplification being to reach elastic network models. There are a few

key realizations that have helped in this process of simplification. The first realization

is that NMA Hessian matrix, as a second derivative of the potentials, consists of two

types of contributions. One is related to force field spring constants while the other the

inter-atomic forces or torques. The second key realization is that the contribution from

the force-based terms is small and the full NMA can be well approximated by the spring-

based NMA, or sbNMA. The third and last key realization is that the extensive force

field parameters used in NMA and sbNMA, numbering in hundreds or even thousands,

can be well approximated by a very small set of force-field independent constants.

The simplification process that starts with NMA and reaches ANM presents itself

also a new way to derive high-quality elastic network models. Indeed, in drawing the

connection between NMA and elastic network models, we have discovered several new

elastic network models that, i) closely resemble the accuracy of full-scale NMA, and yet,

ii) are simple, easy to use, without the complexity of energy minimization that NMA

requires. Particularly, we have identified ssNMA as one of the best simplified models.

ssNMA has the simplicity of elastic network models while maintaining a high correlation

with NMA.

Since ssNMA requires only an input structure and a few force field independent

parameters, it can be applied directly to experimental structures without the need for

energy minimization. This is highly significant. Since formerly with NMA, even if we

want to believe that an input structure, say a crystal structure, represents an equilibrated

native state, chances are that we would not be able to find a force field that agrees with
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us that the structure is energetically minimized. Thus, we would not be able to apply

NMA without first “minimizing” and thus deforming the input structure that we have

believed to be native. With ssNMA, it is different. ssNMA can be directly applied to

the structure. The minimization step is skippable in ssNMA - this is highly beneficial,

especially when the minimization step is unnecessary and can do more harm than good

to an input structure.

In the process of connecting NMA and elastic network models, we also gain a clearer

understanding why elastic network models work well and how it can be further improved.

We discovered that ANM can be greatly enhanced by including an additional torsional

term and a geometry term. The new model, eANM, or enhanced ANM, has a much

higher correlation with NMA than ANM does.

Compared with other modified elastic network models existing in the literature [25,

77, 153, 154, 159, 163] that modify the original elastic network models in various ways

and show improvement to various extents, our approach is unique in that it is not based

on a heuristic model whose validity is justified a posteriori, e.g., by showing that a

model is able to produce experimental B-factors well. Our derivation of models is “first-

principle” based. It starts with NMA, and arrives at elastic network models through steps

of reasonable simplification. The advantage of doing in this way is that it maintains a

tight link to the original NMA model and gives us a deeper understanding of what makes

a good model. The disadvantage is, as is true with most first-principle based derivations,

there is a limitation on what simplifications can be made, and consequently, what models

can be reached by these steps of simplifications.

It is worth noting that the whole process of bridging NMA and elastic network models

and all the discussions so far apply to atomistic models only. In other words, this work

shows how to bridge between the classical NMA, which is atomistic by nature, and

atomistic elastic network models. This work has discovered some high-quality atomistic

elastic network models such as ssNMA and eANM. These models are highly valuable
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especially when computing normal modes for proteins where energy minimization is

undesired and an atomistic model is needed. In such situations, ssNMA or eANM is an

ideal alternative to NMA, for which energy minimization is required.

ssNMA or eANM is intrinsically fine-grained models and does not have direct coarse-

grained counterparts as ANM does. To apply them to coarse-grained systems, one can

project their fine-grained Hessian matrices into the Cα space to get a coarse-grained

ssNMA or eANM, by doing (as in Eqs. (1) and (2) of [163]):

Hall =

∣∣∣∣∣∣∣
HCα

Hint

H>int Hother

∣∣∣∣∣∣∣ ; (3.14)

H∗Cα
= HCα

−Hint ×H−1
other ×H

>
int; (3.15)

where HCα
, Hother, and Hint are submatrices of the Cα atoms, the other (non-Cα) atoms,

and their interactions, respectively. H∗Cα
represents the reduced coarse-grained Hessian

matrix. By projecting ssNMA or eANM to the coarse-grained level, the computational

cost is reduced. However, the inversion of matrix Hother can still be costly. Such a

projection can be very useful when a higher-quality coarse-grained model (and higher

quality normal modes) is desired and computational time is not an issue.

We have applied ssNMA and eANM directly, without energy minimization, to a

number of sizable proteins and our results show that eANM and ssNMA give better

correlations with experimental B-factors than the coarse-grained ANM, see Table S2 in

Supplemental Materials. However, as we pointed out earlier, cautions must to be taken

to interpret the results, since experimental B-factors are strongly influenced by crystal

packing, lattice order, etc., which are not considered in these models.

Because ssNMA or eANM is intrinsically fine-grained and have to be projected

(through matrix inversion of a sub-matrix) in order to be used at the coarse-grained

level, their applicability to protein systems is more limited than those models that are

naturally coarse-grained, such as ANM. Indeed, as shown in Table S3 in Supplemental

Materials, eANM takes longer time to compute than ANM, and for even larger proteins,
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eANM may become even inapplicable. ssNMA is in a similar situation. Therefore, though

the present work provides a nice bridge between NMA and fine-grained elastic network

models, future work is still needed to extend the bridge to coarse-grained elastic network

models, particularly regarding to developing higher-quality coarse-grained models that

are also computationally as efficient as or comparable to existing coarse-grained models.

Perhaps what has been learned here from how fine-grained ANM can be enhanced (i.e.,

the eANM model) may inspire the development of such kind of enhanced coarse-grained

elastic network models.

In summary, in this work through steps of simplification we have built a bridge be-

tween NMA and elastic network models. In the process of bridging the two, we have

also discovered several high-quality simplified models. Being all-atom and using simpli-

fied potentials, these models help make the tight connection between the usual atomic

models and the elastic network models. They also have the advantage of being able to

incorporate a higher level of cooperativity through including more springs up to a longer

distance and through multi-body interactions.
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CHAPTER 4. BRIDGING BETWEEN NMA AND

ELASTIC NETWORK MODELS: PRESERVING ALL-ATOM

ACCURACY IN COARSE-GRAINED MODELS

A paper published in PLOS Computational Biology
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Abstract

Dynamics can provide deep insights into the functional mechanisms of proteins and

protein complexes. For large protein complexes such as GroEL/GroES with more than

8,000 residues, obtaining a fine-grained all-atom description of its normal mode motions

can be computationally prohibitive and is often unnecessary. For this reason, coarse-

grained models have been successfully used. However, most existing coarse-grained mod-

els use extremely simple potentials to represent the interactions within the coarse-grained

structure and as a result, the dynamics obtained for the coarse-grained structure may

not always be fully realistic. There is a gap between the quality of the dynamics of the

coarse-grained structure given by all-atom models and that by coarse-grained models.

In this work, we resolve an important question in protein dynamics computations – how
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2Graduate student and Associate Professor, respectively, Department of Computer Science, Iowa

State University.
3Professor, Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University.
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http://dx.doi.org/10.1371/journal.pcbi.1004542


www.manaraa.com

53

can we efficiently construct coarse-grained models whose description of the dynamics of

the coarse-grained structure remains as accurate as that given by all-atom models? Our

method takes advantage of the sparseness of the Hessian matrix and achieves a high

efficiency with a novel iterative matrix projection approach. The result is highly signif-

icant since it can provide descriptions of normal mode motions at an all-atom level of

accuracy even for the largest biomolecular complexes. The application of our method to

GroEL/GroES offers new insights into mechanism of this biologically important chap-

eronin, such as the conformational transitions of this protein in its functional cycle are

even more strongly connected to only first few lowest frequency modes than with other

coarse-grained models.

Author Summary

Proteins and other biomolecules are not static but are constantly in motion. More-

over, they possess intrinsic collective motion patterns that are tightly linked to their

functions, and resemble mechanical systems. Thus, an accurate and detailed descrip-

tion of their motions can provide deep insights into their functional mechanisms. For

large protein complexes with hundreds of thousands of atoms or more, an atomic level

description of the motions can be computationally prohibitive, and so coarse-grained

models with fewer structural details are often used instead. However, there can be a big

gap between the quality of motions derived from atomic models and those from existing

coarse-grained models. In this work, we solve an important problem in protein dynam-

ics studies: how to preserve the atomic-level accuracy in describing molecular motions

while using coarse-grained models? We accomplish this by developing a novel iterative

matrix projection method that dramatically speeds up the computations. This method

is significant since it promises more accurate descriptions of protein motions approach-

ing an all-atom level even for the largest biomolecular complexes. Results shown here

for a large molecular chaperonin demonstrate how this can provide new insights into

functional process.
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4.1 Introduction

Protein dynamics plays a key role in describing the function of most proteins and

protein complexes. The importance of protein dynamics studies has been increasingly

recognized alongside with the importance of the structures themselves. Experimentally,

protein dynamics can be studied using nuclear magnetic resonance (NMR) [42, 88], time-

resolved crystallography [134], fluorescence resonance energy transfer (FRET) [6] and

other single-molecule techniques [61], etc. Computationally, the study of protein dynam-

ics most commonly takes relies upon molecular dynamics (MD) simulations [56, 74, 85].

Normal mode analysis (NMA) is another popular and powerful tool for studying protein

motions and dynamics that was first applied to proteins in the early 80’s [17, 38, 72].

The advantage of using normal modes over MD is that these can most efficiently describe

protein motions near the native state. To apply NMA, a structure is first energetically

minimized. The minimized structure is then used to construct the Hessian matrix, from

which normal modes can be obtained from its eigenvectors and eigen-frequencies. This

method poses a huge demand on computational resources, especially memory, since ap-

plications to large supramolecules may have hundreds of thousands of atoms. The time

spent on computing the eigenvalues/eigenvectors also is large, of the order of the cube

of the number of atoms. Consequently, its applications are limited to smaller systems.

For this reason, many simplified models [2, 8, 43, 47, 58, 59, 66, 75–77, 79, 80, 84,

89, 126, 130, 139, 146, 149, 150, 155, 160] have been developed for efficient normal mode

computations. These models use simplified structural models or simplified force fields or

commonly, both. One commonly applied type of coarse-grained models are the elastic

network models [2, 8], which usually treats each residue as one node, and residue-residue

interactions as Hookean springs. It has been demonstrated for a large number of cases

that these extremely simple models can still capture quite well the slow dynamics of a

protein [139]. And because of their high level of simplicity, they have been successfully
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applied to study the normal mode motions of the largest structural complexes such

as GroEL/GroES [55, 58, 82, 132, 133, 156], ribosome [64, 67, 68, 146], nuclear pore

complex [75], etc.

However, along with the significant gains from this simplicity comes also some loss

of accuracy, particularly in the accuracy of the normal modes [91, 142]. The validity

of most simplified models was justified a posteriori, by comparing with experimental B-

factors or sets of multiple experimental structures for example. How well they preserve

the accuracy of the original NMA has rarely been assessed directly [89]. To overcome

this problem of accuracy, we are building a strong connection between NMA and elastic

network models (ENMs) through a series of steps of simplification that begin with NMA

and end with ENMs, and propose a new way to derive accurate elastic network models

in a top-down manner (by gradually simplifying NMA) [89]. Our derivation on the

realization that the Hessian matrix of the original NMA can be written as a summation

of two main terms, the spring-based terms and the force/torque-based terms, with the

former contributing significantly more than the latter. By ignoring the latter term,

we obtained at a new model, sbNMA (or spring-based NMA), that has high accuracy

and closely resembles the original NMA and requires no energy minimization. sbNMA,

like the original NMA, is force-field dependent and uses many parameters. By further

simplifying it, we arrived at two force-field independent elastic network models, ssNMA

(simplified spring-based NMA) and eANM (enhanced ANM), both of which use many

fewer parameters and yet still preserve most of its accuracy [89]. For example, the mean

square fluctuations predicted by ssNMA for a set of small to medium proteins have an

average correlation of nearly 0.9 with those predicted with the original NMA [89]. It

was shown [91] also that ssNMA modes are more accurate than those from other elastic

network models. However, this bridging, as detailed in Ref. [89], connected NMA only

with all-atom elastic network models but not with coarse-grained ones. Both ssNMA and

eANM, though strongly resembling NMA, are by nature all-atom models and cannot be

directly applied to coarse-grained structures.
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There is little doubt that for very large biomolecular systems, coarse-grained structure

representations are needed, since all-atom normal mode analyses for such systems are

computationally often out of reach. Now the aim here is to extend the idea of bridging

between NMA and elastic network models to coarse-grained models while preserving

sufficient accuracy to obtain accurate protein dynamics even for very large systems.

Is it possible to efficiently construct coarse-grained models whose description of the

dynamics of a coarse-grained structure remains as accurate as that given by all-atom

models? Coarse-grained models, such as Cα-based models, obviously do not have all

the structural details of all-atom models. But, is it possible that the dynamics of the

Cα atoms can be given by the coarse-grained models is as accurately as with all-atom

models? Is it possible to have both the simplicity of coarse-grained structure and the

accuracy of all-atom interactions? These questions are the focus of this work. And

we demonstrate affirmative answers to these question by employing a novel iterative

matrix projection technique. While our earlier work [89] bridged between NMA and

all-atom elastic network modes and represents a force-field simplification of NMA while

maintaining most of its accuracy, the present work presents the additional structural

simplification from all-atom elastic network models to coarse-grained elastic network

models. Once this full bridging is completed, it should reveal deep insights for how

to develop coarse-grained elastic network models that preserve most of the accuracy of

NMA.

4.2 Methods

A coarse-grained model has two key components: i) a coarse-grained structure rep-

resentation, and ii) an interaction model for the coarse-grained structure. The chal-

lenge that one normally faces in developing coarse-grained models is that there is no

prescription for how to represent the interactions among the coarse-grained structure



www.manaraa.com

57

precisely [51]. Most semi-empirical force field potentials are for atomic models. There

are now a few coarse-grianed potentials for use in dynamics. Highly simplified Hookean

springs are commonly used to model residue-residue interactions. These clearly provide

only a very rough approximation to the atomic models. Other studies that have also been

linked atomic and coarse-grained models have applied force-matching [51] or required fre-

quency spectra to have similar distributions [65]. A statistical mechanical foundation was

developed by the same research group [95] to show that many-body potentials of mean

force that govern the motions of the coarse-grained sites can be generated. Regarding

coarse-grain structure representation, Cα atoms are normally used to represent residues,

although other coarse-grained representations have also been investigated [158].

In this work, to extend the accurate all-atom models to coarse-grained models without

losing accuracy in the dynamics, we take two steps. First, we show that it is possible to

define a precise interaction model for the coarse-grained structure so that its dynamics

are the same as that of its all-atom counterpart. Second, we show that the construction

of such a precise interaction model can be performed efficiently and straightforwardly.

4.2.1 How to Construct a Precise Interaction Model for a Coarse-Grained

Structure?

It is useful first to perform an operation that separates out the atoms used for the

coarse-graining from the remainder of the atoms. Mathematically, it is possible to define

a precise interaction model (in the form of a Hessian matrix) for the coarse-grained

structure by rearranging the original Hessian matrix Hall into parts for the coarse-grained

atoms and the remainder of the atoms in separate subspaces, as was done by Eom et.

al. [28] and Zhou and Siegelbaum [163]:

Hall =

 Hcc Hcr

H>cr Hrr

 , (4.1)
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H̃cc = Hcc −HcrH
−1
rr H>rc, (4.2)

where c stands for the atoms used for the coarse-graining, r stands for the remainder

of the structure, and > represents the matrix transpose. It can be shown mathemati-

cally [11, 147] that H̃cc maintains the same description of the mean-square fluctuations

and cross-correlations of the coarse-grained structure as the original Hessian matrix. All

elements in H̃−1
cc are the same as their corresponding elements in H−1

all . A similar idea of

using matrix projection to obtain the motions for subsystems was previously used also

by Brooks and Zheng and their co-workers [40, 148] to develop their VSA (vibration

subsystem analysis) model.

However, this mathematical rearrangement in Eq. (4.2) requires the inversion of Hrr,

which appears to be nearly as difficult as computing the inverse of the original all-

atom Hessian matrix, assuming the number of atoms in the coarse-grained structure is

much smaller than that of the original all-atom model. Therefore, unless H̃cc can be

computed in an efficient way, the precise interaction model defined in Eq. (4.2) will be

computationally too expensive to apply for very large systems and thus of little practical

utility.

In the next section, we present a novel way for computing H̃cc efficiently, without

directly inverting Hall or Hrr. As a result, this permits the construction of coarse-grained

models that can represent the dynamics of the coarse-grained structure as accurately as

for all-atom models.

4.2.2 Efficiently Construct the Coarse-Grained Hessian Matrix through It-

erative Projection

To efficiently obtain the Hessian matrix H̃cc from Eq. (4.2) but without having to

directly invert Hrr, we take advantage of the fact that for the Hessian matrix Hall of the

the second derivatives of the potential, can be highly sparse for some all-atom models.
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Hall is not so sparse for the conventional NMA, due to the persistence of electrostatic

interactions to long distances. However, it is sparse for ssNMA, an accurate all-atom

model that closely resembles NMA as mentioned above.

The potential for ssNMA includes most of the same interaction terms as for NMA, ex-

cept for the electrostatic interactions [89]. As a simplified model of spring-based NMA (or

sbNMA), ssNMA uses one single uniform spring constant for all bond stretching terms,

one uniform spring constant for all the bond-bending terms, and one for the torsional

terms. Its non-bonded van der Waals interactions are truncated near the equilibrium

distance to avoid negative spring constants in the Hessian matrix [89]. A single set of

van der Waals radii are used for all van der Waals interactions. All the equilibrium val-

ues such as bond lengths, bond angles, and torsional angles are taken from the reference

structure. Consequently, most of the off-diagonal elements in the ssNMA Hessian matrix

are zero.

In the following, we use ssNMA to construct the all-atom Hessian matrix Hall and

show how a precise interaction model H̃cc can be efficiently constructed through an

iterative matrix projection procedure. We call this model coarse-grained ssNMA, or CG-

ssNMA, which will preserve the same accuracy as the all-atom ssNMA in its description

of the dynamics of the coarse-grained structure.

The procedure, as detailed before, takes full advantage of the sparseness of the Hessian

matrix. Given a protein that has n atoms, one can iteratively reduce its size (or coarse-

grain it) by removing one atom, or a group of r atoms, at a time without losing accuracy

in depicting the motions of the remaining atoms. This can be done by adding a correction

term to the interactions among the remaining atoms. Define by H the Hessian matrix

with n atoms as follows:

H =

 Hkk Hkr

H>kr Hrr

 , (4.3)

where Hkk is the block matrix of H for the remaining n − r atoms, Hrr the block
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matrix for r atoms to be removed, and Hkr represents the interactions between the

group of atoms to be removed and the remaining atoms. The effective Hessian matrix

H̃kk of the remaining atoms after taking into account the correction term can be written

as [28, 91, 163]:

H̃kk = Hkk −HkrH
−1
rr H>kr, (4.4)

with the term HkrH
−1
rr H>kr being the correction term.

It can be shown the motions of the remaining atoms as described by H̃kk is the same

as those by the original Hessian matrix H. This numerical preservation is crucial when

an all-atom Hessian matrix is gradually coarse-grained by repeatedly removing non-Cα

atoms, since it guarantees that the quality of the description of the Cα atoms remains

the same while the size of the Hessian matrix is being reduced.

Note that each atom interacts only with a few, say m on average, atoms due the

sparseness of the Hessian matrix. As a result, Hkr has only a small number (rm) of non-

zero elements, representing the interactions between the group of atoms to be removed

and the rest of the atoms. Therefore, the term HkrH
−1
rr H>kr in (4.4) can be computed

in O(r3 + r2m2) time. Coarse-graining the whole protein structure takes roughly n/r

iterations and thus requires in total O((r2 + rm2)n) time, which is linear in the protein

size n.

To further reduce the running time, matrix elements that are near zero (weak inter-

actions) are set to zero if their absolute values are less than a predetermined threshold

value ξ. A properly chosen ξ can further improve computation speed while preserving the

accuracy, by effectively reducing the number of interactions, especially those between the

atoms being removed and retained Cα atoms. Different ξ values were tested, as detailed

in the next section.

Fig. 4.1 illustrates how the sparseness of the Hessian matrix is maintained throughout

the iterative matrix projection procedure. At the initial step, atoms are shuffled so that

Cα atoms are grouped together and placed on the left-most side of the Hessian matrix, as
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shown in Fig. 4.1(A), where the grouped Cα and non-Cα atoms are separately represented

by dark and light gray blocks, respectively. Blue dots represent the non-zero elements

of the Hessian matrix. The non-Cα atoms can then be rearranged, for example, using

the Cuthill-McKee algorithm [24], so that the atoms that interact with one another are

placed close together in the matrix. As a result, the non-zero elements are relocated near

the diagonal of the matrix (see Fig. 4.1(B)). In such a sparse matrix, Fig. 4.1(C) shows

the effect of applying one matrix projection using Eq.(4.4), where the red dots represent

the elements of the matrix whose values are modified. Note that the sparseness of the

non-Cα region is mostly unaffected by the projection. The sparseness of the white region

(interactions with Cα atoms) can be maintained by using an appropriate threshold value

ξ mentioned earlier.

Algorithm 2 below lists the steps that iteratively reduce the all-atom Hessian matrix

to a coarse-grained one. The algorithm takes as input the all-atom Hessian matrix H, a

set of Cα atom indices {k1, ..., kn}, and a threshold value ξ. All matrix elements whose

absolute values are less than ξ are set to 0. In practice, it turns out that lines 4-11

run more efficiently if each iteration of the coarse-graining process removes not single

atoms but a group of atoms (Ri as in line 2). Removing a group of adjacent atoms

reduces the average number of interactions (m in the above Big-O notation) with the

remaining atoms. These groups of atoms are determined by spatially partitioning the

whole structure (3-D) into cubic blocks (18 Å for each dimension, about 500 atoms in

each block). These blocks represent initial groups of atoms. The reason why atoms are

partitioned in this way is to minimize the number of interactions among the different

groups. Blocks are then sorted by their sizes (i.e., the number of atoms) in descending

order. Next, starting with the smallest one, blocks on the “small” end (usually blocks

on the outsides of a structure) are iteratively merged together with the next smallest

block as long as the size of the merged group does not exceed the size limit (which is

about taken to be around 500 atoms per group, the number of atoms in a regular cubic
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Figure 4.1 Illustration of how the sparseness of the Hessian matrix can be
maintained throughout the iterative matrix projection procedure,
when coarse-graining is performed by selecting the Cα atoms for
retention. (A) In a first step the original Hessian matrix is shuffled
so that Cα atoms (in dark gray at the top-left corner) are separated from
the non-Cα atoms (in light gray). Blue dots represent non-zero elements.
(B) In a second step the non-Cα atoms are rearranged again so that those
interacting with one another are placed close together in the matrix using,
for example, the Cuthill-McKee algorithm [24]. As a result, most non-zero
elements are placed near the diagonal. (C) Matrix after performing one
projection to remove atoms in group r. The red dots represent the blocks
modified by the projection. The sparseness of the non-Cα region is mostly
unaffected. The sparseness of the white region (interactions with Cα atoms)
can be maintained by using an appropriate threshold value ξ, see text.

block). The merging process stops when there are no small blocks left to be merged. In

lines 7 and 9, sparse(A, b) returns a sparse matrix of A by setting to zero A’s elements

that satisfy |Ai,j| < b, where |Ai,j| is the absolute value of Ai,j. Threshold ξ/m is used

in line 9 since the addition (or subtraction) in line 10 is accumulated m times. Line 9

prevents very small values from being added to H in line 10 and then removed in line 7

at the next iteration.
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Algorithm 2 CoarseGrain(H, {k1, ..., kn}, ξ)
1: K ← {k1, ..., kn}
2: R← {R1, R2, ..., Rm}
3: H← Hessian matrix of H reshaped in the order of K,R1, R2, ..., Rm
4: for i = m,m− 1, ..., 1 do
5: k ← |K|+

∑i−1
j=1 |Rj |

6: r ← k + |Ri|
7: B← sparse(H1..k,k+1..r, ξ)
8: D← Hk+1..r,k+1..r

9: E← sparse(BD−1B>, ξ/m)
10: H1..k,1..k ← H1..k,1..k − E
11: end for
12: H← sparse(H1..|K|,1..|K|, ξ)
13: return H

4.3 Results

4.3.1 Validation of Model Accuracy and Efficiency

In this section, we first verify computationally that the coarse-grained ssNMA model

constructed according to the proposed procedure indeed not only preserves the accuracy

of all-atom models in its description of the motions of the coarse-grained structure but

also is computationally efficient. To this end, we first show, by applying it to a dataset

of 177 small to medium proteins, that with a properly chosen threshold value ξ, the

coarse-grained ssNMA preserves full accuracy. We then extend the same coarse-graining

procedure, using the same ξ value, to construct coarse-grained ssNMA Hessian matrices

for 80 large superamolecules of different sizes and show that the construction of these

ssNMA Hessian matrices requires only a nearly linear time and can thus be carried out

quickly, even for large systems.

4.3.2 The Iterative Coarse-Graining Procedure Preserves Accuracy

To validate the accuracy of the method, Algorithm 2 is applied to 177 small-to-

medium proteins whose sizes are greater or equal to 60 residues but less than 150. This

is the same set of proteins that was used in our earlier work [89]. Only small to medium
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sized proteins are used at this stage due to the high computational costs of running

all-atom models, which have also been computed here for comparison purposes.

Each protein structure is first energetically minimized. From the all-atom ssNMA

Hessian matrix, two coarse-grained Hessian matrices, H and Ĥ, are computed. H is

computed by direct matrix projection (as in Eq. (4.2)), which is an exact but very

expensive computation, while Ĥ is computed with the proposed iterative projections as

in Algorithm 2. To show that Ĥ preserves the same full accuracy as H, we compute the

correlations between mean square fluctuations (MSF) computed with H and those from

Ĥ, and the eigenvalue-weighted overlaps between modes by H and those by Ĥ. The

eigenvalue-weighted mode overlap is defined as:

3n∑
i=7

wi
w
|mi · m̂i|, (4.5)

where n is the number of atoms, mi (and m̂i) is the ith mode of H (and Ĥ), wi = 1/λi is

the relative weight and is set to be the inverse of the ith eigenvalue of H, and w =
∑3n

i=7 wi

is the normalization factor. The reason why we use the modes with the same indices

(mi and m̂i) instead of the best matching modes when computing the weighted-overlap

is to measure also how well the order of the modes is preserved. (Lower frequency

modes are given higher weights in this weighted overlap measure. The intuition behind

this weighted mode scheme is that it represents how similar the modes (including their

orders) are between the two models.

Table 4.1 shows the levels of accuracy that can be achieved when different threshold

values ξ are applied to ssNMA [89]. It is seen that ssNMA preserves the full accuracy (1.0

in correlations and overlaps) in mean square fluctuations and modes when a threshold

value (ξ) as large as 0.01 is used. Similar results are also seen for the enhanced ANM

model (eANM) [89], another all-atom model that closely resembles NMA. Using a large

threshold value allows the sparseness of the Hessian matrix to be maintained during

the iterative matrix projection process and consequently the construction of the coarse-

grained ssNMA Hessian matrix to be carried out quickly.
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Table 4.1 The accuracy of models at different threshold values ξ.

ξa
NMA (0.0b) ssNMA (0.99b) eANM (0.98b)

corrc w-ovlpd corr w-ovlp corr w-ovlp
0.0001 0.99 0.96 1.00 1.00 1.00 1.00
0.001 0.85 0.62 1.00 1.00 1.00 1.00
0.01 0.82 0.69 1.00 1.00 1.00 0.99
0.1 0.56 0.53 0.99 0.92 0.98 0.83

The accuracy of ssNMA, in both mean-square fluctuations and mode details, is fully
preserved at ξ = 0.01. The initial sparseness of the Hessian matrix, in parentheses, is
0.0, 0.99, 0.98 for NMA, ssNMA, and eANM, respectively.
aξ: the threshold value used to set to zero the smallest elements in the Hessian matrix;
binitial sparseness of the Hessian matrix;
ccorr: mean-square fluctuation correlation;
dw-ovlp: eigenvalue-weighted mode overlap as defined in Eq. (4.5).

For conventional NMA, however, the iterative coarse-graining approach as described

above does not work nearly as well (see Table 4.1). This is due to the slowly-decreasing,

long-range electrostatic interactions.

4.3.3 The Iterative Coarse-Graining Procedure Is Efficient

Secondly, we look at the efficiency, i.e., how much time does this iterative coarse-

graining procedure require? To this end, we apply the same iterative coarse-graining

procedure to construct coarse-grained ssNMA Hessian matrices for a number of large

proteins and protein complexes. The same threshold value, ξ = 0.01, is used, which has

been shown in the previous section to preserve the full accuracy.

Fig. 4.2 shows the efficiency (computational time) of the proposed method as a func-

tion of the system size. In the figure, each blue and red point represents respectively, for

a protein of that size, the coarse-graining time, i.e., the time required to construct the

coarse-grained ssNMA Hessian matrix (with ξ = 0.01), and the diagonalization time of

that coarse-grained Hessian matrix. The dashed lines show the growth rates of the time
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cost as a function of the system size. The curves are obtained from the least squares fit-

ting to a non-linear function f(x) = axb. As shown in the figure, the diagonalization time

(red curve) grows approximately as the cube, while the coarse-graining time grows ap-

proximately linearly. Especially for large complexes, the time needed for coarse-graining

the all-atom Hessian matrix using Algorithm 2 becomes increasingly smaller relative to

the diagonalization time. As a result, the total time for computing the normal modes for

such large protein complexes using the coarse-grained ssNMA Hessian matrices is about

the same as for other coarse-grained elastic network models such as ANM.

Figure 4.2 Comparison of the proposed coarse-graining time and the diago-
nalization time of the coarse-grained Hessian matrix.

In summary, the results in this section demonstrate that the proposed iterative coarse-

graining procedure not only preserves the accuracy in depicting the motions of the coarse-

grained structure but also is computationally efficient in the time it takes to construct

coarse-grained Hessian matrices, being negligible comparing to the time needed for com-

puting normal modes for large protein complexes.

This result is significant since it means that we can construct coarse-grained models

that preserve all-atom accuracy even for very large protein complexes, which was not

previously possible. Next, as an application, we apply the proposed procedure to compute

and analyze the dynamics of the GroEL/GroES complex.
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4.3.4 Application to GroEL/GroES complex

The GroEL/GroES complex [151] is a molecular chaperone that assists the unfolding

of partially folded or misfolded proteins, by providing them with the chance to refold.

GroEL consists of cis and trans rings, each of which has 7 subunits. Each subunit is about

547 residues. GroES also has 7 chains and each chain contains about 97 residues. The

GroEL cis-ring and GroES form a capped chamber that can hold proteins and facilitate

protein unfolding partly through their intrinsic collective motions, such as compressing,

stretching, twisting, shearing, and relaxing. Fig. 4.3 shows the GroEL/GroES structure

(pdbid: 1AON) in top and front views. In Fig. 4.3(A), the three domains of cis and trans

rings are distinguished with different colors: equatorial (green), intermediate (yellow),

and apical (blue) domains.

Figure 4.3 Structure of the GroEL/GroES complex in (A) front and (B) top
views. For subunits of the GroEL, the equatorial, intermediate, and apical
domains of cis and trans rings are colored green, yellow, and blue, respec-
tively. The GroES cap is displayed in red.
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To understand its functional mechanisms, it is informative to obtain the intrinsic

motions of this complex. However, for large protein complexes such as GroEL/GroES

that has over 8,000 residues, standard all-atom NMA will take a prohibitively large

memory and a long time to run. Consequently, past normal mode studies on this complex

were limited to coarse-grained models [58, 132], or all-atom models of single subunits [82].

Though a more accurate description of its normal modes is highly desirable and may

provide deeper insights into the functional mechanism of the complex, it was lacking due

to computational constraints.

Here, we apply the proposed iterative procedure to obtained a coarse-grained ssNMA

Hessian matrix for the entire GroEL/GroES complex. This coarse-grained ssNMA (or

CG-ssNMA) model preserves the all-atom accuracy in its description of the motions of

the coarse-grained structure as in the original ssNMA.

4.3.5 Mean-Square Fluctuations

First, we apply CG-ssNMA to compute mean-square fluctuations. To this end, we

use the GroEL-GroES-(ADP)7 complex (pdbid: 1AON) [151] as the initial structure.

This structure is composed of the co-chaperone GroES, the cis-ring whose subunits are

bound with 7 ADPs, and the trans-ring.

Structure Preparation. The residues whose side-chains are not present in the

PDB structure (1AON) are effectively treated as alanines (no side chains have been

added). Since the crystal structure contains only heavy atoms, hydrogen atoms are

added using the psfgen program from VMD [50] and energetically minimized. Lastly,

the Hessian matrix of all-atom ssNMA [89] is determined, and is coarse-grained using

the proposed procedure as detailed in Algorithm 2.

Fig. 4.4 shows the mean-square fluctuations (MSFs) determined by CG-ssNMA (in

red) and by the coarse-grained Cα-based ANM (in gray), and the experimental B-factors
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(in black). In (A), all 8015 residues’ MSFs and B-factors are shown for three separate

parts: the cis-ring with a white background, the trans-ring with a light gray background,

and the GroES cap with a white background. In (B), the first subunits of the three parts

(cis and trans rings, and GroES) are re-plotted to show the MSF in more detail. In the

figure, the mean-square fluctuations by ssNMA and ANM are computed using all the

modes (including all the high-frequency modes) and scaled to minimize the root-mean-

square deviation from the experimental B-factors. The correlation between experimental

and predicted B-factors is 0.69 for ssNMA, and 0.52 for ANM. Note that there are a few

high peaks in ssNMA MSFs.

Figure 4.4 Comparisons of the experimental B-factors with the mean-square
fluctuations (MSFs) computed with the new coarse-grained ss-
NMA and by ANM, for (A) all residues and (B) only the first
subunit in each ring. The middle gray region is the trans-ring of GroEL,
and the left and right white regions are the cis-ring of GroEL and the GroES
cap, respectively.
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4.3.6 Motion Correlations and Cooperativity

The motion correlation (or cooperativity) Ci,j between the i-th and j-th residues can

be expressed as follows:

Ci,j =
〈ri · rj〉

(〈ri · ri〉〈rj · rj〉)1/2
, (4.6)

where ri and rj are the displacement vectors for the i-th and j-th residues in a given mode,

respectively, a ·b is the dot product of two vectors a and b, and 〈a〉 is the average value

a within the first k lowest frequency modes. Fig. 4.5 shows the cooperativity of residue

motions within each subunit and across the whole protein complex. The cooperativity

plot is generated from the first 15 dominant (i.e., lowest frequency) modes given by the

coarse-grained ssNMA.

Figure 4.5 Cooperativity of residue motions using the first 15 lowest fre-
quency modes of the coarse-grained ssNMA model. (A) The coop-
erativity within a single set of subunits: chain A from the cis ring, chain H
from the trans ring, and chain O from GroES. (B) The cooperativity among
all residue pairs in the GroEL/GroES complex.

Fig. 4.5(A) shows the cooperativity among residue pairs within a single set of sub-

units: one subunit from the cis ring (chain A of 1AON), one from the trans ring (chain
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N), and one from GroES (chain O). The cooperativity of residue pairs is color coded:

red for strong correlated motions (Ci,j = 1), cyan for uncorrelated (Ci,j = 0), and pur-

ple/blue for anti-correlated (Ci,j = −1). The most noticeable difference between the

cis and trans rings is the involvement of the intermediate domain in the motions of the

apical or equatorial domain. In the cis ring, the red regions indicate that the motions

of intermediate domain (I1 and I2) are strongly correlated with those of the equatorial

domain (E1 and E2), while the motions of the apical domain (A) are largely independent

of them. In the trans ring, however, the motions of intermediate domains (I1’ and I2’)

are more correlated with those of the apical domain (A’) than with the equatorial domain

(E1’ and E2’). A similar cooperativity plot for the ANM model is given in Supporting

information (4.5). Overall, the two methods give similar correlation patterns. The main

noticeable difference is that the relative motions between equatorial (E1’ and E2’) and

apical (A) domains of the trans-ring subunit are more clearly shown as anti-correlated

(i.e., the region appears to be bluer) in Fig. 4.5 (given by ssNMA) than what is found

with ANM shown in 4.5.

One general role of the intermediate domain is connecting the apical and equatorial

domains and facilitating the communication between them. The results in Fig. 4.5 im-

ply that the dynamics or motion partner of the intermediate domain depends on the

structural form of the GroEL ring: cis or trans. Considering the structure transitions

of cis→trans and trans→cis that take place during the GroEL/GroES functional cycle,

it is not surprising that the transition path in the former case may be different from a

simple reverse of the latter. Additionally, Fig. 4.5(A) shows that the motions of GroES

and the apical domain (A) of the cis ring also are highly correlated.

The cooperativity of all the residues in the complex is presented in Fig. 4.5(B), along

the off-diagonal where there are four dark blue mesh bands, implying that the apical

domains of subunits that sit on opposite sides across the rings, such as chain C/D and

chain A, are strongly anti-correlated. Another interesting observation is that the motions

of GroES are strongly anti-correlated to the equatorial domain of the cis ring.
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4.3.7 The Characteristics and Quality of the ssNMA Modes

The ssNMA model presented in this work, though coarse-grained in structure, main-

tains an all-atom level accuracy in its description of the interactions and consequently

an all-atom level accuracy in its description of the normal mode motions of the coarse-

grained structure. Such an accurate description of the normal mode motions is highly

desirable and has not been performed before for such a large protein complexes as

GroEL/GroES with over 8,000 residues. In the following, we will examine closely the

first few lowest frequency modes of ssNMA and characterize their motions. The quality

of these modes is then assessed. A comparison with Cα-based ANM modes is made at

the end.

Fig. 4.6 characterizes the slow dynamics of GroEL/GroES in individual modes or

pairs of modes. The first lowest frequency mode portrays a rotational motion around the

cylindrical axis of the complex. This mode matches with the first mode of ANM nearly

perfectly, with a high overlap of 0.97. The third mode is about opening the gate of the

trans ring to receive substrates into its chamber, by moving its apical domains to conform

its structure to resemble that of the cis ring. The second and fourth modes are mainly

about a swing motion of the trans ring. This motion also helps to open the chamber

gate of the trans ring. In ssNMA, this gate opening motion in the trans ring is clearly

captured by these three distinct modes, especially the third mode, whose importance

is manifested also in the conformation transitions during the GroEL/GroES functional

cycle that will be described in the next section. In ANM, there is not a single mode that

closely matches the third mode of ssNMA. The gating opening motion seems to spread

into several modes in ANM and be mingled with other motions. The 5th–6th modes are

shearing motions of the GroES cap and the apical domains of the cis ring. This motion

causes them to shift significantly relative to the equatorial domains. This motion (in

the 5th/6th modes) is similar, to some extent, to that in the second and third modes of

ANM, which in turn have some resemblance also to the second/fourth modes of ssNMA.
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The 7th–10th modes display alternating motions of compression and extension of the

whole complex. The 11th mode is mainly about stretching/compressing the chamber of

the cis-ring. To some extent, this motion (of the 11th mode) changes the structure of

the cis ring towards the shape of the trans ring. The 12th–13th modes are mainly about

tilting the cis/trans rings and the GroES cap.

Figure 4.6 Descriptions of the first 13 lowest frequency modes of
GroEL/GroES, determined by the coarse-grained ssNMA.

The animations of the top 13 dominant modes (lowest frequency) of ssNMA (and

ANM) are made available at http://www.cs.iastate.edu/~gsong/CSB/coarse.

Next, we compare more quantitatively the modes of ssNMA and ANM.

Quantitative comparisons of the normal modes of ssNMA and ANM. Ta-

ble 4.2 summarizes the overlaps between the lowest frequency modes of coarse-grained

ssNMA and ANM. Note that the first ssNMA mode matches nearly perfectly with the

1st ANM mode with a high overlap value of 0.97, while other modes match only moder-

http://www.cs.iastate.edu/~gsong/CSB/coarse
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ately well. The order of modes between the two models also seems to be scrambled. The

fairly low overlap values indicate that only the lowest frequency mode is well preserved

in ANM, but significantly less so for other modes. This is consistent with our previous

observations [91, 92]. The third ssNMA mode is mainly about opening the gate of the

trans ring by moving its apical domains apart so that its structure becomes more similar

to the cis ring. This mode is functionally important as it describes a key protein tran-

sition (see the next section). However, in ANM, the closest resemblance of this motion

is to the 20th mode that describes a mixed motion of expanding/compressing of both

GroEL chambers.

Table 4.2 ssNMA modes and their corresponding best matching modes in ANM.

ssNMA ANM overlap ssNMA ANM overlap
1 1 0.97 8 7 0.83
2 4 0.65 9 9 0.64
3 20 0.62 10 10 0.66
4 5 0.66 11 8 0.78
5 2 0.68 12 11 0.60
6 3 0.72 13 12 0.62
7 6 0.77

The table contains ssNMA modes and their corresponding best matching modes in
ANM with which they have the largest overlaps. Results shown are for the first 13
lowest frequency modes, the same modes whose motion characteristics are presented in
Fig. 4.6.

Fig. 4.7 shows how well the quality of the secondary structures are preserved as the

protein complex moves in the directions of the modes of ssNMA or ANM. In this study,

for each mode, the protein structure is deformed along the mode direction until its RMSD

changes 1 Å from the initial structure. The RMSDs of individual secondary structures

(alpha-helices or beta-sheets) are determined independently, and the average RMSDs of

these secondary structures are then computed. This procedure is repeated for the first

100 lowest frequency modes of both coarse-grained ssNMA and ANM. In the figure, the
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solid red (black) line represents the secondary structure deviations by the coarse-grained

ssNMA (or ANM), and the dashed lines are the least-square fits to the solid lines. The

plot shows that secondary structures are preserved about twice as well with ssNMA as

for ANM.

Figure 4.7 Preservation of secondary structures in mode motions. The solid red
(or black) line represents the average structure deviations of all secondary
structures of the GroEL/GroES complex when it moves along a normal mode
of ssNMA (or ANM). The dashed lines are the least-square fits to the solid
lines.

In summary, there are two major quality improvements in ssNMA modes over ANM

modes, both of which can be attributed to the all-atom accuracy that is maintained in

ssNMA. First, the secondary structures are better preserved in ssNMA modes than in

ANM. The modes determined by coarse-grained ssNMA appear to be more accurate and

realistic. This is consistent with the the more realistic potential that ssNMA employs.

ssNMA has several terms in its potential function that enforce covalent geometry while

the ANM model treats the whole system with uniform elastic springs. Second, which is

related to the first, the modes by coarse-grained ssNMA seem to characterize the different

collective motion patterns of the protein complex better. So, interestingly there is some

significant amount of cohesion that is lost in the coarse-graining with ANM, which is

retained in the ssNMA.
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4.3.8 Normal Models Facilitate the Functional Conformation Transitions

In this section, we apply CG-ssNMA to interpret the conformation transitions in

the functional cycle of GroEL/GroES. Our hypothesis is that the intrinsic normal mode

motions of the complex should facilitate its conformation transitions. To measure how

well the modes are related to the conformation transitions, we compute the overlaps

between normal modes and a given transition. We then repeat the computations and

analysis using ANM and compare the results with those from CG-ssNMA.

In total there are six conformation transitions among five known conformation states

of the complex (see Table 4.3) considered: T→R, T→R′′′, R′′nocap→R′′nocap,flipped,

R′′→R′′flipped, R′′→S, and S→R′′, where “nocap” stands for the absence of the GroES

cap. Table 4.4 summarizes, for these transitions, the top 3 largest overlaps found using

CG-ssNMA and ANM. The indices of the modes that give the largest overlaps also are

given. The first two cases represent transitions from the apo form to ATP/GroES bound

forms. The transitions R′′→R′′flipped and R′′nocap→R′′nocap,flipped were thought to take place

during the functional cycle of GroEL/GroES [104], in which the two GroEL units al-

ternate as a functional chaperone. However, recent work [31] suggested that in vivo the

GroEL/GroES complex assumes a football shape in the functional process and that both

GroEL’s might work simultaneously as protein unfolding chaperones. For this reason,

we consider also the functional transitions between states R′′ and S. Table 4.4 lists the

results.

T→R and T→R′′∗ : Transitions T→R and R′′∗ in Table 4.4 show that these is

mostly achieved with a torsional motion along the vertical axis of the structure. Both

the CG-ssNMA and ANM models capture this torsional motion, but their mode indices

are different. It is the fourth mode in CG-ssNMA that gives the largest overlap while it

is the first in ANM. The results clearly show that the motion to R (as induced by ATP

binding) is along the path to R′′∗, as observed by Roseman et al. [107] from low resolution

cryo-EM images.
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Table 4.3 The five conformations of the GroEL/GroES complex used in this work.

conformation pdb-id description
T state 1GR5 The tense state.

R 2C7E The relaxed state, 7 ATP bound
R′′ 1AON Bullet-shaped structure, 7 ADP bound, GroES bound
R′′∗ 1GRU Bound with 7 ATP and 7 ADP, GroES bound

S 4PKO
S is obtained by removing one GroES ring
from the football-shaped complex 4PKO that
is bound with two GroES rings and 14 ADP.

R′′→R′′flipped : Ranson et al. [104] suggested that the functional process of

GroEL/GroES involves alternations to the two GroEL rings as functional units and

the complex is bullet-shaped [151] in vivo.

Here we consider the transition between a bullet-shaped complex (R′′) to its flipped

counterpart. In this transition, one of the GroEL rings goes from the trans form to the

cis form, while the other ring changes from cis to trans. Results in Table 4.4 show that

the coarse-grained ssNMA captures well the transition from trans to cis using its fourth

mode, which has the second largest overlap, while the 17th mode has the best overlap and

characterizes mostly the transition from cis to trans ring, as well as a partial transition

from trans to cis. ANM, on the other hand, describes the transition of trans→cis and

cis→trans using the 17th and 18th modes, each of which is the mixture of both cis-ring

and trans-ring deformations.

It is thought that after the binding of the ATPs to the trans ring, the GroES cap is

removed and the substrate protein is released. Then the two GroEL rings go through

trans→cis and cis→trans transitions, respectively, and another GroES will bind the op-

posite ring, completing a cycle. The GroES cap stabilizes the cis ring in its conformation

and prevents its transition to a trans conformation. However, after the ATP binding at

the opposite ring, the GroES cap is removed, which makes the transition from a cis

to a trans conformation easier. The larger overlap seen in this transition without the
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Table 4.4 Top three overlaps between structure displacements and normal modes.

transi-
tion

models

T→R T→R′′∗ R′′→R′′flipped R′′nocap→ R′′→S S→R′′

R′′nocap,flipped

ovlp mode ovlp mode ovlp mode ovlp mode ovlp mode ovlp mode
coarse-
grained
ssNMA

0.56 4 0.64 4 0.40 11 0.49 17 0.53 1 0.41 2
0.24 46 0.27 60 0.36 15 0.29 4 0.39 3 0.26 3
0.24 16 0.25 17 0.26 3 0.29 13 0.27 15 0.24 14

CA-
ANM

0.57 1 0.55 1 0.46 13 0.51 18 0.52 1 0.47 3
0.33 51 0.40 11 0.36 32 0.43 17 0.35 20 0.39 14
0.33 10 0.23 96 0.33 20 0.27 116 0.26 68 0.24 24

Structure S is obtained by removing one GroES from the football-shaped structure
(pdbid: 4PKO). For the transition from R′′ to its flipped counterpart, the normal
modes are computed either with or without the GroES cap, in both of these cases only
the two GroEL rings are used to computed the conformation displacement. The values
in each table entry are the overlaps between the given conformation transition and a
mode, with the mode index also given.

GroES cap (see Table 4.4) provides evidence that GroES is probably removed first before

the cis↔trans conformation transitions take place rather than occurring simultaneously.

This agrees with the idea that structures facilitate functional transitions.

R′′→S (opening the trans ring gate): Recent work by Fei et al. [31] suggested

that the GroEL/GroES complex in vivo should have a football shape. The formation

of a football-shaped GroEL/GroES complex was thought to be promoted by substrate

protein (SP), and that “SP shifts the equilibrium between the footballs and bullets in

favor of the former, consequently making them the predominant species.” [31]

Here, we examine the transitions between a football-shaped complex and a bullet-

shaped complex. Transition R′′→S opens the gate of the trans ring to receive a substrate

protein (unfolded or misfolded) in its chamber. This is accomplished by conforming

the structure of its apical domain to that of a cis ring (see the third mode in Fig. 4.6

and in 4.5). 4.5 highlights the conformation change that takes place within a trans-ring
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monomer in this transition. The overlaps between the transition and normal modes reveal

a large contribution by the torsional rotation along the vertical axis (mode 1), as the

trans ring of S is rotated about 8 degree counter-clockwise from that of R′′ [31]. Secondly,

this transition is captured by the third ssNMA mode that mainly depicts a chamber-

opening motion. In contrast, CA-ANM provides this transition mainly using its 20th

mode, which is a mixture of the chamber opening motion and some other deformation

of the cis ring and the GroES cap.

S→R′′ (closing the cis ring gate): Transition S→R′′ closes the gate of the cis

ring to conform its structure to that of a trans ring. Similar to the transition R′′→S,

this transition requires torsional rotations and gate-closing motions. The coarse-grained

ssNMA captures this transition using the second and third low frequency modes. CA-

ANM captures the torsional rotation properly using the third mode, but has to rely

on higher-frequency modes to capture the gate-closing transition (See Table 4.4, last

column).

Summary. For all the above conformation transitions, CG-ssNMA’s interpretation

of them involves more of the first few lowest frequency modes than for ANM. This is

consistent with the observation made earlier that ssNMA modes tend to preserve the

secondary structures better and thus likely are of better quality. Indeed, it is expected

that the all-atom accuracy that CG-ssNMA maintains should render a more accurate

description of protein motions.

4.4 Conclusions and Discussions

Normal mode analysis (NMA) is an indispensable tool for obtaining the patterns of

intrinsic collective dynamics of biomolecular systems around their native states. Such

dynamics studies and computations are important since dynamics is tightly linked to
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functional mechanisms and can reveal insights that studies based on static structures

alone cannot provide. For very large complexes and eventually even a cell, all-atom

descriptions of the dynamics of the system are neither feasible nor necessary. A coarse-

grained structure representation is often sufficient. But what about the dynamics for

a coarse-grained structure? Even though the structure representation is coarse-grained,

we still would like to have an accurate description of its dynamics, ideally as close in

accuracy to an all-atom model as possible.

It was by the use of coarse-grained models that past normal mode studies of very large

biomolecular systems were carried out and remarkable insights were gained in these stud-

ies [58, 64, 67, 75, 132, 146]. There is no doubt that the levels of coarse-graining chosen

for studying these large systems were appropriate. However, what was not previously as-

sessed was the quality of the dynamics that was provided by the coarse-grained structure

representations, by comparing against atomic results. Since most coarse-grained mod-

els use extremely simple potentials to model the interactions within the coarse-grained

structure, the dynamics they render are likely to have some deficiencies.

In this work, we have successfully bridged this gap and have presented a new method

that can be used to efficiently construct a coarse-grained model whose for which the dy-

namics of the coarse-grained structure remains as accurate as that for by all-atom model.

The method takes advantage of the sparseness of the Hessian matrix and iteratively re-

duces its size through projection until it is reduced to that of the desired coarse-grained

structure. Since the projections maintain the accuracy of the interactions, the final

Hessian matrix represents the precise interactions within the coarse-grained structure.

Compared with the RTB (rotation-translation block) method [128] or BNM (block nor-

mal modes) [76], which assumes rigidity and ignores flexibility within each block, our

method provides a more accurate description of the motions of coarse-grained systems.

Compared with the VSA model (vibration subsystem analysis) [40, 148], the advantage

of our method is that it is computationally significantly more efficient.
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Results presented in this work are highly significant since they promise to provide

descriptions of normal mode motions at the all-atom level of accuracy even for the largest

biomolecule complexes. While preserving all-atom accuracy through matrix projection is

not new and has been done previously [11, 40, 148, 163], one of our key contributions here

is developing a new algorithm that can carry out this matrix projection highly efficiently

and therefore make it applicable to very large structure complexes, which has not been

done previously. Such accurate descriptions of the intrinsic dynamics may help reveal

new insights into the functional mechanisms of many biomolecular systems. It should

be noted that because we are able to efficiently obtain a precise interaction model (the

Hessian matrix) for the coarse-grained system, we can solve it not only for a few low

frequency modes, but for all the modes. If only a few low frequency modes are needed,

then there are some alternative methods that may be more efficient.

Our application of the method to GroEL/GroES reveals some new insights into the

functional process of this biologically important chaperonin. For example, our results

show that the conformational transitions of this protein complex in its functional cycle

are even more closely linked to relatively few of its lowest frequency modes than was

previously observed using other coarse-grained models.

This work is a continuation of our previous work that aimed to bridge NMA with

elastic network models [89]. While the previous work bridged between NMA and all-atom

elastic network models, this work represents the second half of developing this bridge,

namely between all-atom elastic network models and coarse-grained elastic network mod-

els. Combined together, the two works demonstrate how one can bridge between the

conventional NMA that uses an all-atom model with a full force-field and coarse-grained

elastic network models that are nowadays the preferred choice for normal mode com-

putations due to their simplicity. This bridging reveals novel insights on how one may

develop coarse-grained models that are not only simple to use, but also maintain most

of the accuracy of the original NMA.
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Limitations and Future Work. Although the proposed iterative coarse-graining

procedure can be used to efficiently construct coarse-grained models whose description

of dynamics of the coarse-grained structure preserves all-atom accuracy, it is limited in

that it can be applied only to some of the models, such as ssNMA or eANM or sbNMA

(see 4.5). It cannot be applied to the original NMA. This is because the potential of

NMA contains electrostatic interactions that decay rather slowly and consequently the

NMA Hessian matrix is not sparse; however, there remain some uncertainties about how

to best compute the electrostatics.

A possible partial solution is to add a switch function to the non-bonded interactions

of NMA and make it decay to zero at some cutoff distance, as is commonly done in

MD simulations. This will make the Hessian matrix much sparser and make it possible

to apply the proposed iterative procedure to NMA. We have shown this to be the case

(see results in 4.5). However, this is only a partial solution since it recovers only the

short range part of the electrostatics. The long range electrostatic interactions, which

may have a pronounced contribution to long-range collective motions and cooperativity,

are still missing. Additionally, the cumbersome energy minimization (which ssNMA

does not require) becomes necessary, which can be a challenge when working with large

biomolecular complexes.

One possible future work is to study the effects of electrostatic interactions on normal

modes, specifically the extents of contributions by short-range and long-range electro-

static interactions. If the short-range component of the electrostatic interactions dom-

inates the long range component in contributing to normal modes, then the aforemen-

tioned partial solution will provide an excellent approximation.
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4.5 Supporting Information

S1 Video.

The important gate-opening mode (mode 3) in R′′ →S transition. The video

shows the motions of the GroEL/GroES complex along this important gate-opening

mode (link). More animations for transitions listed in Table 4.4 are available at http:

//www.cs.iastate.edu/~gsong/CSB/coarse.

S1 Table.

Table 4.5 Accuracy of screened NMA and sbNMA at different threshold val-
ues ξ.

ξa
screened-NMAb (0.87c) sbNMA (0.99c)
corrd w-ovlpe corr w-ovlp

0.0001 1.00 1.00 1.00 1.00
0.001 1.00 1.00 1.00 1.00
0.01 1.00 0.98 1.00 1.00
0.1 0.95 0.62 0.99 0.92

This table is an extension of Table 1 and contains results for two more models:
screened-NMA and sbNMA, whose accuracy also is (nearly) fully preserved at ξ = 0.01.
The initial sparseness of the Hessian matrix, in parentheses, is 0.87 and 0.99 for
screened-NMA and sbNMA, respectively.
(All the following remarks except b are the same as those in Table 1.);
aξ: the threshold value used to set to zero the smallest elements in the Hessian matrix;
bscreened-NMA: same as NMA except that its non-bonded interactions (electrostatics
and van der Waals) are tapered to zero at 9.0 Å;
cinitial sparseness of the Hessian matrix;
dcorr: mean-square fluctuation correlation;
ew-ovlp: eigenvalue-weighted mode overlap as defined in Eq. (4.5).

http://web.cs.iastate.edu/~gsong/CSB/coarse/anim/ssnma-Rpp-mode03-S.gif
http://www.cs.iastate.edu/~gsong/CSB/coarse
http://www.cs.iastate.edu/~gsong/CSB/coarse
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S1 Fig.

HAL HBL
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Figure 4.8 Cooperativity of residue motions using the first 15 lowest fre-
quency modes of the CA-ANM model. (A) The cooperativity within a
single set of subunits: chain A from the cis ring, chain H from the trans ring,
and chain O from GroES. (B) The cooperativity among all residue pairs in
the GroEL/GroES complex.
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S2 Fig.

Trans-ring subunit
of R'' Hpdbid:1AONL

Trans-ring subunit
of S Hpdbid:4PKOL

Equatorial
domain

Intermediate
domain

Apical
domain

subunit of R''
transformed
by mode 3

Figure 4.9 The conformation changes within a trans-ring subunit in R′′ →S
transition. The trans-ring subunit of conformation R′′ is represented by the
thin gray line, while that of conformation S by the thin red line. The thick
curve (in blue, yellow, and green) displays, for this R′′ →S transition, the
conformation change contributed by the third mode (of the ssNMA model)
alone. This figure shows that a large conformation change takes place within
the subunits in this conformation transition and is well captured by the
third mode of ssNMA. The three conformations shown are aligned by the
equatorial domain (in green).
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CHAPTER 5. UNIVERSALITY OF VIBRATIONAL

SPECTRA OF GLOBULAR PROTEINS

A paper published in Physical Biology

http://dx.doi.org/10.1088/1478-3975/13/1/016008

Hyuntae Na24, Guang Song245, and Daniel ben-Avraham34

Abstract

It is shown that the density of modes of the vibrational spectrum of globular proteins

is universal, i.e., regardless of the protein in question, it closely follows one universal

curve. The present study, including 135 proteins analyzed with a full atomic empirical

potential (CHARMM22) and using the full complement of all atoms Cartesian degrees

of freedom, goes far beyond previous claims of universality, confirming that universality

holds even in the frequency range that is well above 100 cm−1 (300 – 4000 cm−1), where

peaks and turns in the density of states are faithfully reproduced from one protein to the

next. We also characterize fluctuations of the spectral density from the average, paving

the way to a meaningful discussion of rare, unusual spectra and the structural reasons

for the deviations in such “outlier” proteins. Since the method used for the derivation of

the vibrational modes (potential energy formulation, set of degrees of freedom employed,

1This chapter is reprinted with permission of Phys. Biol. 2016, 13(1), 016008.
2Graduate student and Associate Professor, respectively, Department of Computer Science, Iowa

State University.
3Professor, Department of Physics, Clarkson University.
4Primary researchers and authors.
5Author for correspondence.

http://dx.doi.org/10.1088/1478-3975/13/1/016008


www.manaraa.com

87

etc.) has a dramatic effect on the spectral density, another significant implication of our

findings is that the universality can provide an exquisite tool for assessing and improv-

ing the quality of potential functions and the quality of various models used for NMA

computations. Finally, we show that the input configuration too affects the density of

modes, thus emphasizing the importance of simplified potential energy formulations that

are minimized at the outset. In summary, our findings call for a serious two-way dia-

logue between theory and experiment: Experimental spectra of proteins could now guide

the fine tuning of theoretical empirical potentials, and the various features and peaks

observed in theoretical studies – being universal, and hence now rising in importance –

would hopefully spur experimental confirmation.

5.1 Introduction

The atomic structures of thousands of proteins have been elucidated and display re-

curring patterns of folding, such as the common globin and Greek key folds, and the

β-barrel folds. These repeating structural motifs obtain distinct flexibility signatures.

Identifying these intrinsic deformability characteristics is required to ascertain and bet-

ter understand protein functionality. Historically, the characterization of any object’s

internal deformabilities under small perturbations has been achieved by a normal mode

analysis of its internal degrees of freedom. While a normal mode analysis is a well-defined

and straightforward computation, the identification of a suitable set of internal degrees of

freedom and an appropriate potential energy formulation to quantify the effects of defor-

mations, remains more of an art. Here we examine the spectrum of vibrations obtained

for a large number of proteins, using several of the more traditional approaches for nor-

mal mode analysis. Within a given approach, the density of the spectrum of vibrations

is universal, despite the many significant differences among individual proteins.
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Normal modes of proteins have been studied since the early 1980’s [17, 38, 72, 131]. A

normal mode calculation requires as input an empirical potential function for the various

forces between the protein’s atoms: the more detailed the atomic potential function, the

more reliable the results, but on expense of more cumbersome computations. Starting

with the seminal work of Tirion [139], various simpler alternatives to a detailed potential

have been explored [2, 8, 9, 43, 47, 76, 77, 80, 89, 91, 130, 142, 149, 153, 160]. In addition

to simplifications in the potential energy formulation, reduced sets of internal degrees of

freedom (dofs) have been explored. Two common choices include the restricted set of

dihedral angles degrees of freedom, or torsional dofs, for short (the rationale being that

changes in bond lengths and angles require far larger energy investment than dihedral

or torsional changes) [38, 72, 141] and Cartesian dofs for the reduced set of only the

Cα atoms [8, 9].

Early normal mode analyses examined the density of the modes by frequency range,

g(ω), and deliberated the meaning of the various features in the curves found for each

protein. However, it was soon found out that, when properly normalized, the g(ω) of

different proteins seem to collapse onto one universal curve, characteristic of globular

proteins in general [10, 141]. This initial finding was based on merely 5 proteins, and on

a normal mode analysis with only torsional dofs. Most later studies of the distribution of

normal modes did little to confirm the universality of g(ω), as they focused on properties

of the spectrum only at the low frequency range (up to ∼ 20 cm−1) and tended to rely on

simplified potential functions. An exception is the recent analyses of Hinsen et al., [44, 46]

of crambin, lysozyme, and myoglobin, using the AMBER potential, that suggested that

the universality of the density of the modes extends to all frequencies.

In this paper, we re-examine the hypothesis that g(ω) is universal. Advances in

computer technology in recent years allow us to consider 135 globular protein structures

whose resolutions are better than 2.5 Å and whose sequence identity is less than 30%,

and obtain spectra of normal modes with a detailed atomistic empirical potential and
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the full complement of Cartesian degrees of freedom. (Some of our results are presented

for torsional dofs only and/or for simplified potentials.) This wealth of information lets

us do much more than simply confirm the putative universality of g(ω): (1) Our main

result is that the density of the spectrum of vibrations, g(ω), is universal also for the full

complement of Cartesian dofs, down to the seemingly idiosyncratic peaks and details in

the high-frequency range. This is a big surprise: in the low-frequency range universality

is expected on the grounds that slow modes involve long-wavelength coherent motion of

large domains of a protein, and therefore the many interactions involved (at the surfaces

between domains) average out in the same fashion, regardless of details. In contrast,

high-frequency oscillations involve small coherence lengths and motions of small groups

of atoms relative to one another, so here universality is unexpected. (2) Our large data

set allows us to characterize not only a reliable average for g(ω), but also the typical

fluctuations from that average. Specific features in the g(ω) of a protein are unusual only

in comparison to these fluctuations, so the old notion of identifying and discussing the

meaning of salient features of g(ω) of a protein finally becomes possible. For example,

our data allows us to identify subtle, yet meaningful differences in the spectra of pro-

teins of different folds. Some of these observations are echoed in experimental findings.

(3) The universal curve for g(ω) depends on the specific empirical potential one uses,

its parameters, etc., whether the potential is detailed or simplified, as well as on the set

of degrees of freedom (e.g., Cartesian or torsional). We show that the comparison of

the g(ω)’s arising in each case is a very sensitive way to assess the accuracy and success

of the various approximations and approaches. (4) Working with an atomistic detailed

potential, the first step in an NMA involves minimizing the potential function, thereby

altering the input PDB structure. In other simplified approaches, one posits a potential

that is minimized at the given configuration (PDB, or other) at the outset. We show

that energy-minimized starting configurations obtain significantly different spectra g(ω)

than the original PDB starting configurations, and we discuss the implications of this

finding.
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The remainder of this paper is organized as follows. In Section 5.2 we describe our

protein dataset and briefly review the theoretical technique of normal modes analysis

and the various approaches (full and simplified potential functions, choices of dofs, etc.)

considered in this work. Our results are presented and analyzed in Section 5.3. Final

conclusions and promising open problems are discussed in Section 5.4.

5.2 Materials and Methods

5.2.1 The Protein Dataset

The protein dataset used in this study is the same as the one used in a previous

work by Na and Song [92]. The dataset includes 135 proteins resolved to better than

2.5 Å and following minimization none of the proteins undergoes more than a 6.0 Å

RMSD change. The proteins are quite evenly divided between different fold classes,

including 42 all-α proteins, 37 all-β proteins, and 56 α/β-proteins. Their sizes range

from 61 residues (pdb-ids: 1I2T, 1I0M, 2J5Y, 3MP9) to 149 residues (pdb-ids: 1GU1,

2Y9F, 3AXC); the distribution of the proteins by size is illustrated in figure 5.1(A).

Only small to medium sized proteins are used here due to the large computational cost

of running NMA. The protein structures are energetically minimized using the Tinker

program [102] with the CHARMM22 force field [83]. The amount of structure deviations

due to energy minimization is given in figure 5.1(B). No cutoff distance is specified in

the process. As a result, the program does not taper the electrostatic or the van der

Waals potential with any smoothing function but considers all pair-wise non-bonded

interactions. The minimized structures and the original PDB structures are available at

http://www.cs.iastate.edu/~gsong/CSB/NMAdb/135.html.

http://www.cs.iastate.edu/~gsong/CSB/NMAdb/135.html


www.manaraa.com

91

60 80 100 120 140 160

0

5

10

15

protein size Hnumber of residuesL

nu
m

be
r

of
pr

ot
ei

ns

HAL

0 1 2 3 4 5 6

0

5

10

15

20

root-mean-square deviation @ÞD

nu
m

be
r

of
pr

ot
ei

ns

HBL

Figure 5.1 (A) The size distribution of the 135 proteins used in this work; (B)
the extent of structure deviations caused by energy minimization
among the same 135 proteins.

5.2.2 Normal Modes Analysis

Normal modes analysis (NMA) was first applied to proteins in the early 80’s. [17,

38, 72, 131]. Conventional NMA proceeds from a detailed atomic potential function, V ,

for the interactions within the protein system. Generally, the input structure (mostly a

PDB structure) is not at an energy minimum according to V . As required by NMA, the

potential function has to first be minimized — a computationally expensive operation

that also distorts the starting configuration by as many as several angstroms (RMSD).

Using the minimized structure, one constructs the Hessian matrix H, which is the

second derivative of the potential energy with respect to the protein’s degrees of freedom

{qi}Ni=1;

Hij =
∂2V

∂qi∂qj
, (5.1)

as well as the mass, or inertia matrix M;

Mij =
∑
k

mk
∂rk
∂qi
· ∂rk
∂qj

, (5.2)

where the sum runs over all atoms k of the protein, and mk and rk are the k-atom’s mass

and location, respectively. One then solves the generalized eigenvalue problem:
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Hvi = λiMvi . (5.3)

Here vi is the i-th vibrational eigenmode, and the eigenvalue λi = ω2
i encodes its (an-

gular) frequency; vi(t) = vi(0) cos(ωit). For comparison with experimental work, it is

customary to express ωi in terms of the corresponding inverse wavelength of electromag-

netic radiation (measured in cm−1). This is achieved by dividing its value (in radians/sec)

by 2πc, where c is the speed of light, c = 2.997925× 1010 cm/sec.

Finally, we compute the density of vibrational modes g(ω), the focus of this work,

in the following way. Subdivide the frequency range into bins of width ∆ω and count

the number of modes nj that have frequency ω within the j-th bin, i.e., modes with

ωj − 1
2
∆ω < ω < ωj + 1

2
∆ω. Then g(ωj) = nj/(N∆ω), where N is the total number of

dofs for the protein. (Typically, ∆ω = 5 or 10 cm−1.) This procedure is done for each

of the 135 proteins in our dataset and their g(ω)’s are processed as needed (averaged,

compared to one another, etc.)

There exist several choices for the {qi}Ni=1 degrees of freedom. The simplest choice,

conceptually, is the full complement of Cartesian degrees of freedom; the (x, y, z) co-

ordinates for each of the atoms in the protein. This yields a diagonal M matrix and

minimization is conceptually simpler than with generalized dofs, but the number of dofs

N can become prohibitively large. A common alternative in early work was using the

quite smaller set of torsional and dihedral angle dofs; bond lengths and bond angles

are frozen in this method (approximating the fact that these are much stiffer than the

torsional and dihedral dofs). A drawback of torsional dofs is that the M matrix is

more complicated (though smaller), and the minimization algorithm is trickier. In the

present study our torsional modes are obtained by projecting a Cartesian Hessian onto

the torsional space, as done in the Torsional Network Model [86].
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5.2.3 Simplified Normal Mode Analyses

Because conventional NMA is cumbersome to use, due to its complicated all-atom

potential and energy minimization process, in 1996 Tirion proposed a simplified potential

that required no minimization [139]. Tirion’s approach uses torsional dofs (freezing bond

lengths and angles) and postulates a universal Hookean potential between non-bonded

atom pairs:

V =
∑
〈ij〉

1

2
C(rij − r0

ij)
2 , (5.4)

where rij and r0
ij are the current and the starting-configuration distance between atoms

i and j, respectively, and the sum runs over all 〈ij〉 non-bonded atom pairs that are

sufficiently close to one another: r0
ij < riV dW + rjV dW + rc (raV dW is the Van der Waals

radius of atom a and rc is a cutoff distance, typically a few angstroms). The big advantage

of the Tirion potential is that it requires no minimization, it is minimized at the outset

at the starting configuration {r0
i }. Other potentials and approaches that require no

minimization (known generally as elastic network models) have been developed since

Tirion’s seminal work. We now review the main ingredients of the simplified approaches

discussed in this paper.

ANM. The ANM, or Anisotropic Network Model, was developed by Atilgan et al., [2]

in 2001. It is mainly a coarse-grained version of the Tirion potential, with each residue

represented only by its Cα atom. It has been used also as an all-atom model, though to

a much lesser extent. Simplifying further still, ANM employs the easier to use Cartesian

dofs. However, on obliterating the constraints of bond lengths and angles it washes

out the distinction between bonded and non-bonded interactions and further loses in

accuracy. Because of its easy implementation ANM has been widely used in many

normal mode-based studies and analyses.

sbNMA. In 2014, Na and Song [89, 90] developed a new way for deriving simplified

models for normal mode computations. They employed a top-down approach and derived
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several high-quality elastic network models (i.e., require no minimization) by gradually

simplifying the conventional NMA. The most accurate of these approaches is the spring-

based NMA (sbNMA). Structurally, sbNMA is the same as the conventional NMA and

is an all-atom model. The interaction model of sbNMA, on the other hand, is different

from the NMA force field from which it is derived. While the Hessian in general consists

of spring-constant-based terms Hspr (or spring-based, for short) — terms that are pro-

portional to the spring constants — and force/torque-based terms Hfrc (terms that are

proportional to the inter-atomic forces or torques) [89, 90], i.e., HNMA = Hspr + Hfrc, sb-

NMA keeps only the spring-based terms. The rationale was that the force/torque terms

contribute significantly less to the overall dynamics than the spring-based terms [89]. To

ensure stability, regions where the spring constants become negative are excluded. For

example, electrostatic interactions (which were shown to contribute much less than van

der Waals interactions [89]), are not included, as attractive forces give rise to negative

spring constants. The spring-based NMA (or sbNMA) preserves much of the complexity

of the original NMA, and the neglect of the force/torque terms has minimal impact.

As a result, sbNMA yields very high-quality vibrational modes and closely resembles

NMA [89].

A very similar approach to sbNMA, dubbed ATMAN (for Atomic Torsional Mode

Analysis), was developed independently by Tirion and ben-Avraham [142]. ATMAN

too keeps only spring-based terms, derived from a detailed atomic potential, and only

wherever these are positive. The main difference to sbNMA is that ATMAN allows for

“stretching” the range of positive spring constants, to compensate for the loss of range

where the spring constants are negative. This, however, adds tunable parameters.

ssNMA. A further simplification beyond sbNMA is achieved by the simplified spring-

based NMA, or ssNMA. It combines many of the different constants in sbNMA into one

single parameter, thus requiring a much smaller set, of 17 parameters in total. For

example, it uses a single bond-stretching spring constant for all bonded pairs of atoms,
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regardless of their types. This of course results in some loss of accuracy, compared

to sbNMA. Below, we limit our study to NMA (with the CHARMM22 force field),

the sbNMA and ssNMA derived from it, and ANM. Note that only the original NMA

requires minimization, while all of the simplified approaches can start from any given

protein configuration.

5.2.4 Computing the Contribution from Various Interaction Types

The CHARMM22 potential energy function, which we use for NMA and sbNMA, con-

sists of several types of terms: (a) bond stretching, (b) bond-angle bending, (c) improper

angle distortions, (d) torsional and dihedral rotations, and (e) non-bonded interactions,

including Van der Waals and electrostatic forces. We group Urey-Bradley interactions

along with the bond-angle bending terms. One can compute the relative individual con-

tribution from each type of interaction as follows. Since V = Vbond + Vangle + · · · +

Vnonbonded, the Hessian decomposes into mutually exclusive matrices;

H = Hbond + Hangle + Himproper + Htorsional + Hnonbonded . (5.5)

Then, the relative contribution cij of interaction type

j ∈ {bond, angle, improper, torsional, nonbonded} to the ith mode vi, is

cij = v>i Hjvi . (5.6)

Note that the cij are properly normalized,
∑

j cij = 1, because of equation (5.5) and

the fact that our eigenvectors are H-normalized; v>i Hvi = 1. cij is guaranteed to be

greater or equal to 0 with approaches like sbNMA and ATMAN, where the various Hj

are positive semi-definite. Intuitively, cij reveals the extent to which interaction type j

constrains the vibration along mode i.
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5.3 Results

5.3.1 Universality of the Density of Vibrational Modes

Universality in the full complement of Cartesian dofs. Our main result is

presented in figure 5.2, which demonstrates that the density of vibrational modes for

each of the proteins in our dataset is very nearly the same. In other words, the density

of the spectrum of vibrations is universal. To obtain this figure, we have conducted a

full NMA on each of the proteins in the dataset, employing the CHARMM22 atomic

potential function, and using all of the Cartesian dofs of each protein’s atoms, and

obtained their g(ω)’s. In the plot, we show the average of g(ω) over all 135 proteins

(black curve); fluctuations from the average are indicated by colored bands that include

proteins within different percentile ranges: 25–75 percentile (orange), 5–95 percentile

(red), 0–100 percentile (gray). An animation that displays the vibrational spectra of the

proteins one by one and illustrates how they all share a common spectrum pattern is

given in the Supporting Information.

Surprisingly, even accounting for extreme fluctuations (the 0–100 percentile includes

all of the proteins in the dataset), the various main features of g(ω) — seemingly id-

iosyncratic turns and peaks — are faithfully reproduced throughout the whole frequency

range. These peaks must thus correspond to some physical characteristics of the struc-

ture of globular proteins in general, and to physical interactions within them that are

independent of the details of each individual protein structure.

The universality of g(ω) would seem to exclude any possibility of gleaning particular

knowledge of a protein from its specific vibrational spectrum. This is not necessarily so:

If the density of modes of a protein deviates significantly from the average g(ω), perhaps

the deviations can tell us something about the structure of the specific protein in ques-

tion. Whether a deviation is significant, could be decided from the fluctuation bands in

figure 5.2. There could be, however, a different cause for deviations, besides anomalous
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Figure 5.2 Universality of the density of vibrational modes of globular pro-
teins. The black line shows the average of the 135 proteins in the dataset.
The fluctuations from the average are represented by the color bands, de-
marcating the fraction of proteins that are included within various ranges:
25–75 percentile (orange), 5–95 percentile (red), 0–100 percentile (gray).
The bin size ∆ω used here for computing the density of modes is 10 cm−1.

structure: Relative fluctuations of a random variable tend to decrease inversely propor-

tional to the square root of the system’s size (the protein’s size), so smaller proteins

would exhibit larger fluctuations, even if their structure is not anomalous. With that

in mind, we have examined the proteins that fall outside of the 5–95 percentile, but

found no correlation with size: The distribution of protein sizes in that range is very

similar to that of the dataset at large (figure 5.1(A)). Based on these preliminary results,

we conclude that rare fluctuations are more likely due to structural anomalies. A more

detailed study of the dependence (or independence) of fluctuations on size, and of rare

outlier proteins is left for future work.

We stress that ours is the first study of universality of g(ω) that employs the full

complement of Cartesian degrees of freedom. Universality was first discovered by study-
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ing the spectrum from the restricted set of torsional dofs, in the 0–300 cm−1 frequency

range [10, 141]. For low frequencies, universality is expected because slow modes involve

motion of large domains of a protein, and the many interactions at the surfaces between

domains average out uniformly, by the law of large numbers, regardless of details. High-

frequency oscillations, on the other hand, involve small coherence lengths and only a

few atoms, so the law of large numbers cannot be as easily invoked. We were therefore

unprepared for the striking results of figure 5.2. A possible explanation is that, because

the high-frequency modes represent the oscillations of only a few atoms relative to the

rest of the protein, that has a much bigger mass, the size and structural details of the rest

of the protein is mostly irrelevant and consequently the characteristics of the oscillations

depend only on the structural composition of the few oscillating atoms and are largely

protein independent. We also note that the scope of the present study, of 135 proteins,

far surpasses the scope of previous works on the subject, proving universality beyond all

doubt, at least from a theoretical point of view. Experimental study on four proteins

that have different mixtures of secondary-structures showed that their vibrational spec-

tra have “a common appearance” [37]. This experimental result in the low-frequency

range thus seems to confirm universality as well [37] (see also Section 5.3.3).

Cartesian vs. torsional degrees of freedom. We now examine the density

of vibrations for the restricted set of torsional dofs. Recall that changes in torsional

angles are a lot easier to effect than changes in bond lengths and angles, so most of

the protein’s motion under thermal excitation could be accounted by torsional changes

alone. Moreover, because the reduced set of torsional angles is much smaller than the

full complement of Cartesian dofs, it allows analysis of much larger proteins and protein

systems, a fact that accounts for much of their popularity.

In figure 5.3 we compare the vibrational modes in Cartesian dofs (dashed black lines)

to those in torsional dofs (solid black lines) for four randomly selected proteins in our

dataset: 3NBC (a), 3RHB (b), 2QCP (c), 3MP9 (d). Since the total number of dofs is
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different for Cartesian and torsional coordinates, we show the actual count of modes in

each 5 cm−1-bin, instead of the usual density of modes. In this way one can see that the

additional bond-length and angle bending dofs included in the Cartesian complement

add vibrational modes in each bin. Nevertheless, there is a clear relationship between

the Cartesian and torsional curves: Both the main peak, at about 80 cm−1, and the

secondary peak, at about 300 cm−1, are in nice agreement in the two representations

(albeit with more modes present in the Cartesian dofs). As the frequency increases,

torsional modes die out and a comparison becomes irrelevant. The first two peaks are

particularly important, as they encompass the low frequencies that account for most of

the protein’s thermal motions (B-factors, etc.).

Same as for the Cartesian case, the density of torsional modes for the proteins in

the dataset clusters around a single universal curve (the solid red curve in figure 5.3,

which is the averaged density of modes over all the proteins in the dataset). Knowing

that g(ω) is universal in either choice of dofs, Cartesian or torsional, and that the two

representations agree on the first two low-frequency peaks, allows one to use whichever

set of dofs is convenient for the question at hand. Indeed, in what follows, we shift back

and forth between these two choices.

The origin of the peaks. We now address the question of what gives rise to

the various detailed features in the spectrum density g(ω). For each particular eigen-

frequency, ωi, we compute, using the sbNMA model, the relative contribution cij (j =

a, b, . . . , e) of each of five interaction types: (a) bond stretching, (b) bond-angle bending,

(c) improper angle distortions, (d) torsional and dihedral rotations, and (e) non-bonded

interactions, as explained in Section 5.2.4. The contribution of interactions of type j

to the spectrum density is then given by cijg(ωi). The relative contributions of the five

interaction types are shown in figure 5.4.

Of the five types of interaction only (d) and (e) are accessible with torsional dofs, since

torsional and dihedral angle changes can affect neither bond lengths nor bond angles.



www.manaraa.com

100

0 100 200 300 400 500 600
0

5

10

15

20

25

30

Ω @cm-1D

nu
m

be
r

of
m

od
es

3NBC, 148 residues
Cartesian modes
torsional modes
mean Cart. modes
mean tor. modes

HAL

0 100 200 300 400 500 600
0

5

10

15

20

Ω @cm-1D

nu
m

be
r

of
m

od
es

3RHB, 100 residues
Cartesian modes
torsional modes
mean Cart. modes
mean tor. modes

HBL

0 100 200 300 400 500 600
0

5

10

15

Ω @cm-1D

nu
m

be
r

of
m

od
es

2QCP, 80 residues
Cartesian modes
torsional modes
mean Cart. modes
mean tor. modes

HCL

0 100 200 300 400 500 600
0

2

4

6

8

10

12

Ω @cm-1D

nu
m

be
r

of
m

od
es

3MP9, 61 residues
Cartesian modes
torsional modes
mean Cart. modes
mean tor. modes

HDL

Figure 5.3 Spectrum of vibrations for Cartesian vs. torsional dofs for four
example proteins: 3NBC (A), 3RHB (B), 2QCP (C), and 3MP9 (D).
The averaged density of modes (over all the proteins in the dataset) for
Cartesian and torsional dofs are represented respectively by the dashed and
solid red curves.

Thus one expects those two types of interaction to account for all of the spectrum density

observed with the restricted set of torsional dofs. Indeed, the dark gray- and light gray-

shaded regions in figure 5.4, corresponding to the two types (d) and (e) respectively,

bear a remarkable resemblance to the torsional spectra of figure 5.3.

Both the main and secondary peaks originate largely from torsional motions. The

first peak is mainly due to torsional motions along the backbone, the φ or ψ rotations,

since they involve the motions of larger masses and hence tend to oscillate at lower

frequencies, while the second peak is probably more influenced by the torsional motions
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Figure 5.4 Relative contribution of the various interaction terms to the vi-
brational spectrum. Inset: The main and secondary peaks shown in more
details.

of the side-chain rotamers, which is of higher frequency since the mass of the rotating

component is smaller. This is in agreement with a previous study that suggested that the

low frequency modes are contributed mainly by rigid body motions of the entire residues

and side chain rotations [46].

As the frequency increases beyond about 500 cm−1 the bond stretching and bond angle

interactions account for the lion’s share of the spectrum density. The peaks at about

1,000 – 1,700 cm−1 are largely dominated by angle bending interactions, while those in

the 3,000 – 4,000 cm−1 region arise mostly from bond stretching. Indeed, experimental

results [83, 100] involving gas-phase infrared and Raman spectroscopy, though limited

to small molecules such as N-methylacetamide (CH3-CO-NH-CH3) or alanine dipeptide,

confirm the vibrations of bonds and angles at frequencies similar to the peaks we find,

and have been even used for adjusting force-field parameters. The additional (universal)



www.manaraa.com

102

information provided by the spectrum density g(ω) of globular proteins, combined with

such experiments, could help better fine-tune the existing empirical potential energy

functions (see, also, Section 5.3.3).

One can confirm the origin of the main and secondary peaks in yet another, perhaps

more direct way. In figure 5.5 we plot the torsional dofs spectrum density of sbNMA

under three different conditions: (i) The original sbNMA, in gray (NMA is shown in

black, for reference), (ii) without the torsional and dihedral interaction terms (blue),

and (iii) with those terms included, but without the non-bonded interaction terms

(red). The elimination of the torsional interactions results indeed in the obliteration

of the secondary peak, and the elimination of non-bonded interactions results in a big

distortion of the main peak, in agreement with the conclusions of the foregoing analysis.

Notice also that the correspondence between main peak and non-bonded interactions, and

secondary peak and torsional interactions is not quite perfect: Elimination of torsional

terms has some effect on the shape of the main peak as well, and elimination of the non-

bonded interactions seems to have quite a dramatic effect not only on the main peak

but also on the secondary peak. This agrees nicely with figure 5.4), where the shading

indicates that both non-bonded interactions and torsional terms contribute to the main

and secondary peaks, though to a different extent (the relative torsional contribution is

larger for the secondary peak).

5.3.2 Vibrational Spectra for Different Protein Folds

Are there different vibrational spectra for proteins belonging to different classes of

fold? It has long been known [73] that secondary elements such as α-helices, β-sheets,

and turns exhibit different typical vibrational frequencies in the range below ∼ 100 cm−1.

These differences should in principle show in the vibrational spectra of proteins belonging

to different fold classes, though the typical fluctuations from one protein to the next

(figure 5.2) would seem to impose a formidable obstacle to observing this phenomenon.
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Figure 5.5 The torsional-dofs spectrum of vibrations with and without vari-
ous interaction terms. The black line is the spectrum of NMA while the
gray line that of sbNMA, a model that closely resembles NMA. When the
torsional interaction term is removed from sbNMA’s potential, the second
peak disappears. The first peak disappears (or reshapes significantly) when
non-bonded interaction term is removed.

Indeed, the spectra of any two proteins in our data set belonging to a different fold, an

all-α protein and an all-β protein, say, are clearly within the typical fluctuations range.

This result is in accord with experimental findings of Giraud et al., [37] who failed to

observe any significant differences between the spectra of α-rich and β-rich proteins in

their studies with ultrafast OHD-RIKES spectroscopy. With some care, however, one

can tease out small but significant differences from our theoretical simulations.

Since the differences, if any, are expected in the low-frequency range, we carry our

analysis in only torsional dofs, which capture the features of g(ω) in this range most

cleanly. We have used the CATH catalog of protein structure classification [118] for

identifying the fold type of most of the proteins in our dataset; the remainder of the
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proteins were sorted out by manual inspection. We thus identified 42 alpha-proteins (27

by CATH and 15 manually), 37 beta-proteins (27 by CATH and 10 manually), and 56

α/β-proteins (38 by CATH and 18 manually). We then averaged the torsional vibrational

frequency distributions g(ω) within each group. The three resulting curves are plotted in

different colors in figure 5.6a (all-α in red, all-β in blue, and α/β in gray). Although the

three curves are very similar to one another, systematic deviations can be clearly seen

upon closer inspection: The main peak shifts progressively to the left, from all-α to α/β-

to all-β proteins, and the opposite trend occurs at the farther slope of the secondary

peak. That these shifts are systematic can be most clearly seen by randomly reassigning

the proteins in the dataset to three groups of corresponding sizes, and recomputing the

averages in the random groups: The three curves now intertwine seemingly at random

and the systematic deviations disappear (figure 5.6a; inset).

0 100 200 300 400 500 600
0.000

0.001

0.002

0.003

0.004

0.005

0.006

Ω @cm-1D

gH
Ω
L

0 100 200 300 400 500 600
0.000

0.001

0.002

0.003

0.004

0.005

alpha
beta
alpha�beta

randomly shuffled
groups

HAL

alpha

beta

alpha�beta

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125

0

2

4

6

8

10

12

14

Location of the first peak @cm-1D

ð
of

pr
ot

ei
ns

HBL

Figure 5.6 Vibrational spectra and statistics of the main peak location for dif-
ferent protein folds. (A) Vibrational spectra for different protein folds:
42 all-α proteins (red), 37 all-β proteins (blue), and 56 α/β-proteins (gray).
Notice the systematic shifts in the main peak and the far slope of the sec-
ondary peaks. Inset: Plots of g(ω) when equivalent number of proteins are
assigned randomly to the three groups as in the main plot. The systematic
deviations disappear. (B) Statistics of the location of the main peak for
the three groups of protein (color coding same as (A)) roughly fits a Gaus-
sian distribution (curves shown for all-α and all-β proteins only) and clearly
demonstrate the differences between the various types.
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A better view of the systematic deviations is provided by the statistics of the location

of the main peak, where the differences are most pronounced. In figure 5.6b we show

histograms for the locations of the main peak in the three groups (same color coding as

before), along with best gaussian fits to the histograms for the two extreme groups (all-α

and all-β). Despite the large overlap the shifts are quite apparent: The peak for all-α

proteins is at about 85 cm−1, while that of beta-proteins is at 70 – 75 cm−1. The fact

that α-helices are more compactly structured than β-sheets may account for the stiffer

(higher frequency) peak for all-α proteins.

In the high-frequency range (and using all dofs), differences between α- and β-rich

proteins are observed near the range of amide vibration frequencies that have been ex-

tensively used to distinguish between α-helix and β-sheet in protein infrared (IR) spec-

troscopy [20, 21, 35, 39, 62, 93, 124, 152]. Figure 5.7(A) shows the vibrational spectra

in Cartesian dofs of all-α proteins in a red curve, all-β proteins in a blue curve, α/β-

proteins in a gray curve, and three amide regions (I, II, and III) in light gray bands.

Figure 5.7(B) shows an enlarged view of the three amide regions with additional arrows

that point at peaks in the frequency curves. Though the overall vibrational spectrum is

universal for all globular proteins, Figure 5.7 shows that there are small, yet noticeable

local differences in the three amide regions between all-α and all-β proteins. Remarkably,

in each amide region, not only the general locations of the peaks but also the magnitudes

of the shifts between all-α and all-β proteins as predicted by our method match well with

results from infrared spectroscopy [20, 21, 35, 39, 62, 93, 124, 152].

5.3.3 Using the Vibrational Spectrum to Assess and Improve Theoretical

Approaches

While g(ω) is universal for a given atomic potential function, one would expect to

see different curves for different formulations and parameterizations of the potential.

There is, however, only one reality and the “true” shape of g(ω) can only be decided
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Figure 5.7 Vibrational spectra of amide groups for different protein folds. (A)
shows the vibrational spectra for different protein folds in the range of amide
vibration frequencies: 42 all-α proteins (red), 37 all-β proteins (blue), and
56 α/β-proteins (gray). The frequency range of amide I, II, and III are
highlighted in light gray bands. (B) zooms in on the three amide regions.
Arrows point out peaks of frequency curves of all-α and all-β proteins in the
amide regions.
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by experiment. We show below how this effect can help one choose between different

potential formulations. The vibrational spectrum is also quite sensitive to different levels

of approximation (simplified models/potentials, restricted dofs) and this can be exploited

to assess the accuracy of various simplified models and help fine-tune their parameters.

Sensitivity to different empirical potentials. In order to demonstrate the sen-

sitivity of g(ω) to the potential function one uses for the analysis, we compute the

vibrational spectrum in two different ways: (a) With the atomic detailed CHARMM22

potential [83] (Figure 5.8, in solid line), and (b) with the same potential but where the

Van der Waals radii of the various atoms is replaced with the values from the L79 potential

function [71, 73], and with a uniform torsional spring constant, Kφ = 0.1 Kcal/mol/rad2

(in dashed line). The shift of the main peak to smaller frequencies, in the latter case,

and the overall shape of the curve is quite in agreement with the spectra of proteins

obtained with the L79 potential from the start [142]. (For simplicity, we performed the

analysis in the restricted set of torsional dofs, which suffices for our purposes.) This

demonstrates quite cleanly the influence of different parameter values in different (or the

same) potential function(s). It also lends further support to our claim that the location

of the main peak has to do largely with non-bonded interactions (see Section 5.3.1).

Which potential function gives a better parameterization of the Van der Waals radii?

This, and similar issues, can only be decided by experiment. Experimental spectra are

hard to obtain, since their extraction often requires various uncontrolled assumptions and

approximations, and they remain a challenge. One recent experimental study, employing

ultrafast OHD-RIKES spectroscopy [37] in the low-frequency spectrum, finds a main peak

at about 80 cm−1 and a broader, diffuse peak at around 300 cm−1 (locations marked in the

figure by vertical dotted lines). This seems to favor the CHARM22 potential formulation

over that of L79. Agreement between theory and experiment remains an elusive goal,

though: We hope that theoretically obtained g(ω)’s would spur experimental interest in
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Figure 5.8 Vibrational spectra obtained with the CHARMM22 potential
(solid) and the approximated L79 potential (dashed). The two ver-
tical dotted lines mark the locations of the first and second peaks observed
experimentally [37], which favor the CHARMM22 potential formulation over
that of L79.

searching to confirm the various peaks, and conversely, that the various peaks observed

by experiments would help fine-tune the theoretical potential functions, thus bringing

greater understanding.

Sensitivity to different levels of approximation. The spectrum distribution

g(ω) is also sensitive to various levels of approximation that are used in simplified NMA

models. We have already seen one obvious example of this in Section 5.3.1, in the differ-

ent spectra one obtains with the restricted set of torsional dofs vs. the full complement

of Cartesian dofs. We now examine the effect of other common simplifications. For sim-

plicity we use once again torsional dofs only, since they suffice to capture the differences.
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In figure 5.9 we plot g(ω) as obtained from NMA with the full atomic CHARMM22

potential (black line), along with decreasing levels of approximation: sbNMA (in blue),

ssNMA (red), and ANM (gray). Since NMA requires minimization of the CHARMM22

potential function we use the minimized structures also in all the approximate techniques,

so as to obtain a fair comparison. (The effect of the starting configuration is discussed

separately, in the next section.) The quality of the approximate approaches is clearly

reflected by the general trend: the better the approximation the better the fit of its g(ω)

to that of NMA.
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Figure 5.9 The vibrational spectra obtained by the original NMA and various
simplified models. Vibrational spectra provide a critical assessment of the
quality of the simplified models.

The best approximation, sbNMA, also yields the best fit: The main peak is repro-

duced very faithfully and significant differences show only in the secondary peak, which

seems shifted somewhat towards higher frequencies. This makes sense, in view of the
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fact that the torsional terms in the potential (responsible for the secondary peak) are

more heavily approximated in this technique than the non-bonded interaction terms

(that shape the main peak): The spring constant for the torsional terms is fixed at a

one value, regardless of the amount of rotation, as opposed to the non-bonded spring

constants whose values are a function of the distance between the interacting atoms.

The near perfect reproduction of the first peak confirms that electrostatic interactions,

which are neglected in sbNMA, indeed contribute significantly less to the normal mode

motions than the van der Waals interactions [89]. The ssNMA, that uses a smaller set of

parameters than sbNMA, results in further deterioration of g(ω). Finally, the coarsest

approximation, ANM, with only one universal spring constant for all interactions, yields

the worst fit to the g(ω) of the original NMA.

One can use the g(ω) to improve the various approximations. As an example, the

maximum of the secondary peak of sbNMA, at about 290 cm−1, could be shifted to the

NMA’s maximum at 270 cm−1 by softening the torsional spring constants by a factor

of
√

290/270 ≈ 0.87 (since ω is proportional to the square root of the spring constant,

and the secondary peak is mostly determined by torsional energy terms). Indeed, this

ploy succeeds in effecting the desired shift (results not shown), though the quality of the

main peak somewhat deteriorates. One could in principle fine-tune the various sbNMA

parameters to achieve an optimal fit to g(ω) of the original NMA.

It is less clear how to improve the fit of the main peak with ssNMA. Juxtaposing

the results of sbNMA and ssNMA, it becomes apparent that detailed spring constants

for non-bonded interactions, dependent on atom type and distance, as in sbNMA [89]

(and ATMAN [142]), are crucial to a faithful reproduction of the main peak. Likewise,

the torsional spring constants are essential to a successful reproduction of the secondary

peak. For the simplest approximation, ANM, varying the single available spring constant

would only result in an overall scaling of the frequencies, or the ω’s. In other words, the

whole curve would compress or dilate uniformly, as the spring constant is softened or
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strengthened. Thus, softening the spring constant might achieve a better fit of the

maximum location of the main peak, that would then shift to the left, however, this

would also result in further narrowing of the peak (which seems already too narrow in

comparison to NMA). In short, it seems rather impossible to achieve a satisfying fit with

such a simple approximation.

In closing this section, we note that the quality of the various approximations has

formerly been assessed by comparing individual modes, rather than the distribution of

their frequencies, as suggested here. For example, modes comparison has been used by

Na and Song [91] to conclude that a good quality approximation, such as sbNMA or

ssNMA, requires geometric terms that maintain proper bond lengths and bond angles,

distance-dependent van der Waals based spring constants for non-bonded interactions,

plus torsional spring constants, as a minimal set of parameters. Interestingly, Tirion

and ben-Avraham [142] reached the same conclusion in their development of the closely

related ATMAN approach, but using g(ω) as a guide. Clearly the two techniques, com-

paring individual modes and comparing frequency distributions, have their own problems

and merits and are complementary to one another, enriching our chest of theoretical tools.

5.3.4 How Input Structures Affect the Vibrational Spectrum

A great advantage of simplified potential functions of the type introduced by

Tirion [139] in 1996, such as ANM, sbNMA, ATMAN, etc., is that they require no

minimization: The potential function is at a minimum at the outset, regardless of the

protein’s given configuration. Thus, using such potentials one can obtain the normal

modes of a protein for any number of different starting configurations, or input struc-

tures. It is well known that as long as the input structures do not differ by a large amount,

the first few slowest modes remain quite unchanged (for a recent detailed, quantitative

study, see Na and Song [92]). We here show, however, that the overall distribution of

mode frequencies, g(ω), is affected by different input structures. The question then arises

of what is the proper input structure for a normal mode analysis.



www.manaraa.com

112

To demonstrate the effect, in figure 5.10 we show the spectra obtained with sbNMA

with two different input structures: (i) The PDB configurations of the proteins, and

(ii) the configurations obtained by minimizing the CHARMM22 potential energy. Recall

that the sbNMA parameters are determined from the CHARMM22 potential, but being

a Tirion-type potential it allows us to obtain spectra with the two different input sets.

(In contrast, a full detailed potential such as CHARMM22 must first be minimized and

is limited to only the minimized structures.) For the minimized structures, sbNMA and

NMA using CHARMM22 obtain very similar spectra, as we have already demonstrated

in Section 5.3.3 (the curve for CHARMM22 is included in the figure, as a reminder). The

point of this plot is the significant differences between the spectra of (i) and (ii): For

example, the maximum of the main peak, located at about 80 cm−1 for the minimized

structures, shifts to about 50 cm−1 for the (non-minimized) PDB inputs. On one hand,

universality as shown in figure 5.2 indicates the spectrum is not protein-specific, arising

from structural properties common to globular proteins in general. On the other hand,

results from figure 5.10 imply that the spectrum depends quite strongly on whether the

structures are minimized or not. (The spectra obtained for the same 135 structures

but without energy minimization are universal as well. See Figure S1 in Supplemental

Information). The two are not contradictory to each other. Their difference, specifically

the shift of the first peak, can be understood as follows. First, recall that the spectrum at

the low frequency end is contributed mainly by non-bonded interactions, especially the

van der Waals interactions, which are sensitive to inter-atomic distances. Second, energy

minimization causes the structures to relax according to the force field. The structure

change inevitably alters the inter-atomic distances and consequently the van der Waals

terms in the potential function. The change in the latter in turn mostly determines the

shift in the location of the first peak. At the high-frequency end, however, there is little

difference between spectra of minimized structures and non-minimized structures (see

Figure S2 in Supplemental Information).
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Figure 5.10 Dependence of the vibrational spectrum on input structures. The
spectrum of sbNMA varies significantly (for example, in the location of
the main peak) when different input structures are used. The spectrum of
NMA is shown in the background as a reference.

So, what is the proper starting configuration for a normal mode analysis? Ideally,

one would like to use the equilibrium configuration of a single protein in its natural

state, but the PDB configurations are obtained from crystal structures and it is not

quite clear whether these two are the same. Taking into account that the g(ω) from the

minimized structures agree better with the experimental results of Giraud et al., [37]

(main peak at about 80 cm−1), there are two possibilities: If the CHARM22 potential is

to be trusted then this suggests that the PDB crystal structure is different from a single

protein’s equilibrium structure; conversely, if the PDB crystal structure is the same as the

protein’s equilibrium structure, this suggest that CHARMM22 potential is not quite right

and its various parameters need to be adjusted. On the one hand, there is enough reason
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to suspect that the crystal packing distorts equilibrium configurations. For example,

the configuration of G-actin, as obtained from its crystal form, needs to be distorted

significantly in order to fit with the structure derived in the different packing of F-actin

filaments [143]. On the other hand, experimental spectra are difficult to interpret and the

results are far from uniform. It might very well be that the PDB structures ought to be

trusted more than the CHARMM22 parameters. If the latter is the case, normal modes

analysis must proceed from undistorted PDB structures (using a Tirion-type potential

such as sbNMA, or ATMAN), as argued by Na and Song [92]. The actual answer seems

important, either way.

5.4 Conclusion and Discussion

In this work, we have shown that the density of modes in the vibrational spectrum of

globular proteins is universal: The density of modes of different globular proteins, when

properly normalized, tend to aggregate around one universal curve. We find this univer-

sality to be true not only for the low frequency range and for the restricted set of torsional

dofs, as observed in earlier studies [10, 141], but for the whole frequency spectrum and

for the full complement of dofs available to the proteins’ atoms. This surprising result is

highly significant, in that it implies that the universal patterns of the spectrum, its turns

and peaks, are not protein-specific but rather force-field specific, arising from structural

properties and inter-atomic interactions common to globular proteins in general.

The universality of the spectrum density and the fact that the actual g(ω) curve

depends on the empirical potential used for the normal modes analysis calls for a seri-

ous two-way dialogue between theory and experiment: Experimental spectra of proteins

could now guide the fine tuning of theoretical empirical potentials, and the various fea-

tures and peaks observed in theoretical studies — being universal, and hence now rising

in importance — would hopefully spur experimental confirmation.
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The characterization of the typical fluctuations from the average g(ω) paves the way to

the interpretation of salient features in the spectra of individual proteins, thus promising

to fulfill a decades-old goal of continued work on normal mode analysis. That this

is possible, in principle, was clearly demonstrated by the discernible differences in the

spectra of proteins of different fold families (see Section 5.3.2).

The universality of g(ω) also provides us with an exquisite tool for the assessment of

various approximation approaches. We have thus seen that in order to obtain a faithful

resemblance of the NMA spectrum, an approximate technique must include, at the very

least, spring constants for the non-bonded interactions that are atom-type dependent

and distance-dependent, and include energy terms for changes of torsional and dihedral

dofs, as done in sbNMA [89], or ATMAN [142]. This level of accuracy is indispensable

for highly sensitive tasks such as finding the different vibrations of closely related crystal

isoforms of a protein [140] and can improve, in general, the results of many normal

mode-based studies, such as identifying folding cores [7] or hot-spot residues [99]. In

the opposite extreme, the simplest ANM approximation, while useful for predicting the

general shape of the slowest modes, cannot simultaneously account for both the location

and the width of even the main peak of g(ω).

What is the source of the universality we observe in g(ω)? For low frequency modes,

it has been argued that the coherent motions of large domains of a protein involve mainly

interactions between atoms of adjacent domain surfaces. Those interactions average out

in the same way, for all proteins, simply because the number of interacting pairs is large

and one can then invoke the central limit theorem to describe their combined effect. This

argument does not work, however, for higher frequencies, where the coherence length of

the modes is tiny and the moving components involve but a few atoms. One possibility

is that, due to the very different stiffnesses of torsional changes, angle bending, and bond

stretching, the three elements dominate different parts of the spectrum: torsional terms

in the low frequency range of 0 – 500 cm−1, angle bending in the intermediate range
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of 500 – 2000 cm−1, and bond stretching in the high-frequency range, above 2000 cm−1

(see figure 5.4). Different proteins may have similar percentages of the various angle

and bond types, explaining the universality in the mid- and high-frequency range. Only

future work could unravel the full causes for the universality of g(ω), and whether the

distinct stiffness magnitude for the three types of interactions play a decisive role in it.

Among the many other interesting open questions left by this study we mention the

precise relation between Cartesian and torsional dofs. The densities of the two spectra

look very similar, but there is an excess of modes with Cartesian dofs (see figure 5.3).

Quantitatively speaking, it seems like that there are about 30% more modes in Cartesian

space, at the low frequency end. Why? A possible explanation is that some Cartesian

modes represent a mix of torsional and non-torsional motions (such as bond bending

motions), as indicted by figure 5.4, but still oscillate at low frequencies. Whether this

is the case, as well as a detailed comparison of the slow modes themselves in Cartesian

and torsional dofs, is left for future work.

Is the universality of g(ω) true only for globular proteins or does it encompass other

types of proteins? It would be interesting if the same spectrum density, or features of it,

resulted also for non-globular proteins. How would various ligands affect the spectrum

density? In a recent work by Wynne and co-workers [144], the spectrum of vibrations was

found to be modified after ligand binding (and the range of affected modes was postulated

to play an important role in the ligand binding process as well). Since proteins of different

fold families exhibit discernible variations in the spectrum density, it is plausible that

other types of proteins, and ligands, would also affect the spectrum. Is protein size more

relevant than suggested by our results? In the present study, we were limited to small-

to medium-size proteins, for the ease of all-atom NMA computations. We expect an

inverse correlation between protein size and deviations from universality — the smaller

the protein, the larger the deviation — but we were unable to see that in our data. A

larger study is needed to prove or disprove this notion. Ultimately, a full characterization
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of the fluctuations is important in order to correctly identify outlier proteins. It would be

interesting to study a few outlier proteins whose spectra truly differs from the average,

beyond the expected fluctuations.

The question of the proper starting conformation for a normal mode analysis remains

a genuine puzzle (Section 5.3.4). Given an experimentally determined structure, should

we first minimize it before performing NMA? We have seen that the location of the

main peak shifts significantly, from 80 cm−1 for potential-minimized structures, to about

50 cm−1 for the original crystal structures given by the PDB files. We have postulated

that part of the effect is due to the conformational distortions undergone by the proteins

in the crystal packing. Future spectral studies based on nuclear magnetic resonance

(NMR) structures that are not influenced by crystal packing might shed light on this

issue. Whatever the answer, the fact that the input configuration makes a big difference

in the outcome emphasizes the need for further development of good Tirion-type potential

energy formulations, such as sbNMA and ATMAN, that are minimized at the outset.

An issue that we have left untouched in this study is the question of the precise nature

of the spectrum of vibrations in the low-frequency range. In early work [10, 26] it was

suggested that the low-frequency spectrum has an anomalous spectral dimension of ds ≤ 2

(instead of 3, as expected for a three-dimensional crystal): This implies that the low-

frequency spectrum behaves in power-law fashion, g(ω) ∼ ωds−1. Later studies [19, 105]

found a weak dependence of the spectral (and fractal) dimension with protein size. The

power-law (and anomalous dimensions) interpretation has been contested by Etchegoin

and Nöllmann [29, 96], who maintained that the low-frequency spectrum rather fits a log-

normal distribution and is better explained by the analogous behavior in glasses (their

analysis, however, relied on spectra obtained with only torsional dofs). We have not

attempted to delve into this argument, mostly due to the limited range of sizes of our

proteins. A future study, involving a larger dataset and heavier proteins, and using the

NMA method with an all-atom potential and the full complement of dofs, as done in the

present work, will shed much needed light on this interesting problem.
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CHAPTER 6. QUANTITATIVE DELINEATION OF HOW

BREATHING MOTIONS OPEN LIGAND MIGRATION

CHANNELS IN MYOGLOBIN AND ITS MUTANTS

A paper published in Proteins: Structure, Function, and Bioinformatics

http://dx.doi.org/10.1002/prot.24770

Hyuntae Na23 and Guang Song234

Abstract

Ligand migration and binding are central to the biological functions of many proteins

such as myoglobin (Mb) and it is widely thought that protein breathing motions open up

ligand channels dynamically. However, how a protein exerts its control over the opening

and closing of these channels through its intrinsic dynamics is not fully understood.

Specifically, a quantitative delineation of the breathing motions that are needed to open

ligand channels is lacking. In this work, we present and apply a novel normal mode-

based method to quantitatively delineate what and how breathing motions open ligand

migration channels in myoglobin and its mutants. The motivation behind this work

springs from the observation that normal mode motions are closely linked to the breathing

motions that are thought to open ligand migration channels. In addition, the method

1This chapter is reprinted with permission of Proteins 2015, 83(4), 757–770.
2Graduate student and Associate Professor, respectively, Department of Computer Science, Iowa

State University.
3Primary researchers and authors.
4Author for correspondence.
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provides a direct and detailed depiction of the motions of each and every residue that

lines a channel and can identify key residues that play a dominating role in regulating

the channel. The all-atom model and the full force-field employed in the method provide

a realistic energetics on the work cost required to open a channel, and as a result, the

method can be used to efficiently study the effects of mutations on ligand migration

channels and on ligand entry rates. Our results on myoglobin and its mutants are in

excellent agreement with MD simulation results and experimentally determined ligand

entry rates.

6.1 Introduction

Proteins are one of the fundamental functional units in cells. It is fascinating to see

how proteins exercise precise controls in different functions. Among these, a particular

feat is seen in how a protein regulates the ins and outs of small ligands through its matrix.

This process is of paramount importance in the proper function of many proteins, such

as many enzymes whose efficient catalysis relies directly on the uptake of O2 or other

gaseous molecules. However, the ligand update mechanism employed by these proteins

is poorly understood. As there are usually no open channels for ligands to enter into

or exit from the interior of a host protein at the static structure, protein dynamics has

been often thought to open the channels dynamically but it is not fully understood how

it does so in many proteins.

Experimentally, flash photolysis and mutagenesis studies were often employed to

study the recombination kinetics in heme proteins and to identify ligand migration chan-

nels. [5, 33, 48, 98, 115, 116] For example, site-directed mutagenesis of 27 residues was

used to map out the ligand pathways. [116] Random mutagenesis studies conducted by

Huang and Boxer [48] revealed that single mutations of several clusters of residues far

away from the pathways profoundly affected the ligand-binding kinetics. Time-resolved
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X-ray crystallography [122, 123] literally allowed one to track a photo-disassociated lig-

and as it migrated through the protein, as well as structure relaxation, over a broad range

of timescales, from a few nanoseconds to as long as a few milliseconds. [15, 16, 113, 114]

It provided direct insight into the gating role of the correlated motions between the

backbone and side-chains in ligand migration. [114]

Computationally, molecular dynamics (MD) has been extensively applied to study

ligand migration since late 70’s. [1, 13, 14, 22, 27, 49, 97] A recent work by Ruscio

et al. [109] obtained a cumulative 7-µs simulation on myoglobin and identified many

different trajectories and entry/exit portals on the protein surface. The advantage of

using MD is that one can observe actual events of ligand passing in and out of the protein

matrix. Its drawback is that it takes extensive time to run the simulations and the process

is stochastic. As a result, the less frequently traveled channels are difficult to identify.

Implicit ligand sampling (ILS), [23] an innovative approach developed recently, on the

other hand, computes the potential of mean force (PMF) corresponding to the placement

of a ligand everywhere inside a protein. ILS provides a complete three-dimension map

that identifies the potential cavity sites and the pathways connecting them, some of

which are in regions that are difficult to probe experimentally.

Proteins have intrinsic dynamical behaviors that contribute directly to their func-

tions. [42] Most of these dynamical behaviors are captured by its normal mode mo-

tions. [17, 38, 72] For many proteins such as myoglobin, these motions, often called

breathing motions, open the channels. However, a quantitative delineation of exactly

what and how breathing motions open a given channel is lacking. In this work we

present a novel method that is able to determine exactly what combinations of the in-

trinsic normal modes may be used to open a channel. Given a structure of the protein to

be studied, the method has two key steps. The first step is to apply Voronoi diagram to

estimate where the putative ligand migration channels are. This efficient step (O(n log n)

time) can quickly identify putative channels. [78] The second step is to gradually stretch
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open each channel by identifying and applying the best combination of normal modes

(see Methods section for details). The product of this stretching process is a sequence of

conformation changes that eventually lead to the full opening of the channel.

The strengths and weaknesses of our method are summarized in Table 6.1 in com-

parison with two commonly used methods for channel mapping and identification: MD

and ILS. [23] Compared to ILS, our method is superior in that i) it provides a quanti-

tative description of what combinations of normal modes are needed to open a channel,

and ii) it identifies the key residues whose motions contribute the most in opening the

channels. Compared to MD, the advantage of our method is that i) it does not require

simulations, and ii) the conformation changes needed to open a channel are fully about

the channel’s opening process and are not tangled with the background thermal fluctu-

ations of the protein. This separation may be critical in identifying key motions and

key residues that regulate the channels. Lastly, ILS and MD are both simulation-based

and suffer an intrinsic limitation that simulation-based approaches share: the narrow

range of sampling. Thus, “the effects of slow conformational and allosteric changes will

not be observed during the course of the simulation. Therefore, there is no guarantee

that all biologically relevant pathways will be discovered through simulation.” [23] Our

method is normal-mode based and can identify channels that open rarely and require

slow conformation changes. The weakness of our method is that it does not consider the

interaction between the ligand and the protein. It is thus more suitable for studying the

migration of small ligands.

Our proposed method provides a direct and detailed depiction of the motions of each

and every residue that lines a channel and thus allows one to identify key residues that

play a dominating role in regulating the channel. The all-atom model and the full force-

field employed in the method provide a realistic energetics on the work cost required to

open a channel, and as a result, the method presents itself as an efficient computational

tool for studying the effects of mutations on ligand migration channels and on ligand
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Table 6.1 Comparison between our method and two other well-known computational
methods.

our method ILSa MDb

Method basis normal modes MD MD
(require simulations?) (no) (yes) (yes)
Completeness in mapping close to complete close to complete not complete
ligand channels
Transition pathways Yes No Yes
that open the channels Yes No Yes
Identify normal modes Yes No No
contribute the most Yes No No
Running time short to medium short to medium long
Ligand size small small small or large
Channel prediction quality estimate estimate more realistic
Ligand-protein interactions not considered not considered considered

The table shows the comparison between our method and the two other well-known
computational methods for ligand channel mapping and identification.
aimplicit ligand sampling (ILS) [23];
bmolecular dynamics (MD).

entry rates. Our results on myoglobin and its mutants are in excellent agreement with

MD simulation results and experimentally determined ligand entry rates.

6.2 Methods

To quantitatively determine the most favorable breathing motions that gradually

open up a ligand channel, we first define the constraints on the breathing motions.

These constraints serve to guarantee that the radius of the channel continually increases

by a small amount at each iteration until the channel is fully opened. We then define

the criterion for selecting the optimal breathing motion among those that satisfy the

constraints.
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6.2.1 Constraints Needed for Breathing Motions that Gradually Open a

Channel

6.2.1.1 Definitions

First let us define a channel and the radius of a channel in mathematical terms. As

in [78], given an input protein structure, we first compute its Voronoi diagram. Protein

cavities are denoted by Voronoi vertices that are inside the protein and have large enough

clearance. If we think a channel as a sequence of cylindrical pipes connecting together,

the axis of the channel is represented by consecutive Voronoi edges, or line segments, that

connect an internal cavity with the solvent. A channel may have different clearances at

different segments of the channel. According to Voronoi diagram computation, each line

segment, or Voronoi edge, matches to three atoms that have equidistance to the edge.

This distance represents the minimum clearance at this segment of the channel. As a

channel is composed of a sequence of channel segments, the channel radius or channel

clearance is defined as the smallest clearance of all channel segments. The location

where the clearance is the smallest is the bottleneck of the channel. Let l1, ..., lk be the

axes of the consecutive segments of a channel, ai, bi, ci be the three atoms corresponding

to Voronoi edge li, and ri be the circumradius of triangle 4aibici, 1 ≤ i ≤ k (see

Figure 6.1). The radius of the channel, denoted by a capital R, is the smallest radius of

all the circumradii, i.e., R = min(r1, ..., rk).

6.2.1.2 The Derivative of Channel Clearance with Respect to Normal

Modes.

Denote by a, b, and c the three atoms of channel segment l, and by pi the Cartesian

coordinate of atom i. The circumradius ra,b,c of triangle 4abc is determined using the

trigonometry:

ra,b,c =
‖pa,b‖ · ‖pb,c‖ · ‖pc,a‖

2‖pa,b × pb,c‖
, (6.1)



www.manaraa.com

125

Solvent
Interior of protein

Cavity

Portal

l1

a1

b1

c1

lk

ak

bk

ck

rk

Figure 6.1 Illustration of a channel. The channel between the solvent and an in-
ternal cavity is represented by a series of line segments, l1, ..., lk, or Voronoi
edges. Each channel/line segment (or Voronoi edge) li matches to three
atoms, ai, bi, ci, where 1 ≤ i ≤ k. The atoms represent the lining atoms of
the channel and define the channel clearance, which is the circumradius of
the triangle formed by the three atoms.

where pa,b = pa − pb, ‖p‖ is the norm of vector p, and a × b is the cross product of

vectors a and b.

Let wj be the jth normal mode of the protein, and wja its component for atom a. For

an instantaneous movement of tjwj, where tj is a small scalar value, the new position of

the atom a can be written as pa+ tjwja. In a similar manner, the new positions of atoms

b and c can be obtained. Now, let r(tj) be the circumradius (see Eq. (6.1)) of triangle

4abc, as a function of tj. The first derivative of radius r(tj) with respect to mode wj

can be written as:

ṙwj
=
∂r(tj)

∂tj
=

∂r(tj)

∂r(tj)2
· ∂r(tj)

2

∂tj

=
1

4ra,b,c
· f(a, b, c) + f(c, a, b) + f(b, c, a)

‖pab × pbc‖2
(6.2)

− ra,b,c ·
(pab × pbc)

>(pab ×wjb,jc + wja,jb × pb,c)

‖pab × pbc‖2
,

where a> is the transpose of a vector a, f(a, b, c) = ((wja − wjb)
>pa,b)‖pa,c‖2‖pb,c‖2,

and wja,jb = wja − wjb. ṙwj
represents the rate of change in radius r(tj) with respect

to the movement along mode wj. A large (small) ṙwj
for a particular mode means the

channel radius quickly (slowly) increases or decreases as the protein makes a breathing
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motion along that mode. As the protein fluctuates, the circumradius r(tj) of 4abc is

approximated as:

r(tj; a, b, c) = ra,b,c + ṙwj
· tj. (6.3)

Now consider the effect of a movement that involves a combination of m modes, i.e.,∑m
i=1 tjwj. The circumradius r should become:

r(t1, ..., tm; ai, bi, ci) = rai,bi,ci +
m∑
i=1

ṙwj |i · tj, (6.4)

where rai,bi,ci is the circumradius of the ith triangle 4aibici, and ṙwj |i represents ṙwj
for

4aibici.

6.2.1.3 The Needed Constraints on Normal Modes that Gradually Open

a Channel

Now we determine what combination of normal modes are needed to gradually open

an initially closed channel. Equation (6.4) specifies how the circumradius changes as a

result of mode motions. Our goal is to find the right combination of tjs such that the

channel radius is guaranteed to increase by a certain small amount at each iteration step.

Assume that a channel is composed of k consecutive channel segments, and that each

channel segment i is lined by three atoms ai, bi, and ci, where 1 ≤ i ≤ k. Recall that

the channel radius R is the smallest radius of all channel segments:

R = min
1≤i≤k

rai,bi,ci . (6.5)

After a small movement of
∑m

i=1 tiwi, the channel radius becomes:

Rafter = min
1≤i≤k

r(t1, ..., tm; ai, bi, ci). (6.6)

Now we require that after each iteration, the channel radius increases by a small

amount of s, which is a model parameter, i.e.,

Rafter −R ≥ s. (6.7)



www.manaraa.com

127

Let t = (t1, ..., tm)> be the vector form of mode motion, and ṙi = (ṙw1|i, ṙw2|i, ..., ṙwm|i)
>.

The vector t that increases the channel radius by s satisfies the following constraints:

ṙ>i t ≥ ui ∀1 ≤ i ≤ k, (6.8)

where

ui = min(ra1,b1,c1 , ..., rak,bk,ck) + s− rai,bi,ci . (6.9)

6.2.2 Selecting the Best Combination of Normal Modes

The constraints in Eq. (6.8) specify what breathing motions can gradually open a

channel. There exist many combinations of modes satisfying these constraints. Which

one should we choose? Which criterion should we follow to identify the most plausible

breathing motion? One apparent choice is to minimize the amount of work required to

open a channel. The optimal breathing motion that can open a channel should be the

one that takes the least effort. Another consideration, which is less obvious but very

necessary, is to realize that the derivation of Eq. (6.8) requires that the channel opening

process should take place via many small, ideally infinitesimal, steps. Therefore, in the

process of searching for the optimal breathing motion, we have also to require that the

magnitude of the motion at each iteration step, which is ‖t‖, be small.

Denote by E, f , and H the potential energy, the force, and the Hessian matrix at

the current conformation, respectively. Denote by W the matrix form of the modes:

W = (w1, ...,wm). A protein movement can be written as W t, where t is the vector

form of the modes’ contributions and is t = (t1, ..., tm)>. The potential energy change

δE due to movement W t can be approximated to the second order as:

δE = −f>W t +
1

2
t>W>HW t. (6.10)

Let H̃ = W>HW . In this work, we use all the torsional modes solved by TNM [86]

for W . H is the full Hessian matrix written in the Cartesian space. In general wi is
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not an eigenvector of H. Let Λ and V be the eigenvalues and eigenvectors of H̃ in the

matrix form, respectively, i.e., H̃ = V ΛV >.

Now define,

t∗ = |Λ|1/2V >t; (6.11)

f∗ = |Λ|−1/2V >W>f , (6.12)

where |Λ| is a matrix whose elements take the absolute values of the corresponding

elements in Λ, and |Λ|1/2 is the square root of matrix |Λ|. Note Λ is a diagonal matrix.

Let sign(Λ) be a matrix whose elements take the signs of the elements of Λ. We have,

Λ = |Λ|1/2 sign(Λ) |Λ|1/2.

Using transformed variables t∗ and f∗, Eq. (6.10) becomes:

δE = −f∗>t∗ +
1

2
t∗> sign(Λ) t∗. (6.13)

Note that t∗ in Eq. (6.11) is scaled by the square roots of the eigenvalues (i.e., |Λ|1/2), and

f∗ is the generalized force and is the negative gradient of the potential δE with respect

to t∗. The advantage of using t∗ over t is that the preference for lower frequency modes

is naturally taken into account and the components of t∗ can now be treated equally

when finding the optimal t∗. Λ as a diagonal matrix contains the eigenvalues of the

Hessian matrix H in the mode space defined by W . sign(Λ) represents the signs of these

eigenvalues. When the conformation is at a local energy minimum, all the eigenvalues

are positive and sign(Λ) becomes an identity matrix. At other places, such as at a saddle

point, some eigenvalues may be negative and sign(Λ) may contain some -1’s along the

diagonal.

Recall our discussion in the beginning of this section that in finding the most plausible

breathing motion that can open a channel, we have two considerations. One is to find a

motion that takes the least work, and the other is to have a small ‖t‖ or ‖t∗‖ at each

iteration. Only minimizing the work without requiring the magnitude of t to be small



www.manaraa.com

129

may result in large, unrealistic moves. To allow searching in all directions in the mode

space and yet to bias the search towards the direction of the potential energy’s gradient

descent, we set the search space to be of the shape of an ellipsoid, whose one focus is

the origin of the mode space for t∗ and whose other focus is in the direction of the force

f∗, i.e., the direction of the steepest descent of the potential energy. The eccentricity of

the ellipsoid controls the degree of the biasedness towards the direction of the steepest

descent. An eccentricity of 0 means no bias, while an eccentricity of 1 means the search

is fully along the direction of the steepest descent. Eccentricity is a model parameter

in this work. Experiments show that an eccentricity of 0.7 works well. The function of

such an ellipsoid is:

‖t∗‖(1− e · cos(θ)) = const, (6.14)

where e is the eccentricity, θ is angle between the direction t∗ and the direction of the

steepest descent of the potential energy, i.e.,

cos(θ) = − f∗>t∗

‖f∗‖ · ‖t∗‖
. (6.15)

Now the search for the most plausible breathing motion t∗ that opens a channel

becomes an optimization problem:

argmin t∗ ‖t∗‖2(1− e · cos(θ))2. (6.16)

The above optimization is subject to the constraints given in Eq. (6.8), which can be

rewritten, using the new variable t∗, as follows:

(r∗i )
>t∗ ≥ ui ∀1 ≤ i ≤ k, (6.17)

where

r∗i = |Λ|−1/2V >ṙi. (6.18)

Algorithm 3 lists the steps for finding the most plausible breathing motion that

increases a channel’s radius by a pre-specified amount of s.
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Algorithm 3 ConstraintGuidedMotion(f , H,W, {ṙ1, ..., ṙk}, {u1, ..., uk})

1: V ← eigenvectors of W>HW
2: Λ← eigenvalues of W>HW
3: f∗ ← |Λ|−1/2V >W>f
4: r∗i = |Λ|−1/2V >ṙi ∀1 ≤ i ≤ k
5: t∗ ← argmin t∗ ‖t∗‖2(1− e · cos(θ))2

subjto
1≤i≤k

(r∗i )
>t∗ ≥ ui

6: t← V |Λ|−1/2t∗

6.2.3 The Iterative Procedure for Opening up a Channel

In this section, we summarize the steps to open up a channel. Given a protein

structure, it is first energetically minimized using the CHARMM22 force field. [83] From

the minimized structure, Voronoi diagram is computed and cavities and putative ligand

migration channels are identified.

Algorithm 4 lists the rest of the steps that follow. The algorithm receives as inputs

the initial protein conformation p0 (i.e., the minimized structure), a putative channel

path L0, the target channel radius h that is required for an open channel, and the radius

increase s at each iteration. In the algorithm, channel L0 is gradually opened by applying

at each iteration the best combination of normal modes determined by Algorithm 3,

until the channel radius reaches h. In each iteration, the mode matrix W is determined

by using the torsional network model (TNM). [86] The optimal value t determined by

Algorithm 3 is then used to update the conformation. There are two major advantages

in using torsional modes: i) it reduces the number of degrees of freedom; ii) it avoids

sharp potential energy increases caused by distorted protein geometry.

6.3 Results

In this section, we apply the proposed method to study ligand migration in myoglobin

and its mutants.
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Algorithm 4 ExpandChannel(p0, L0, h, s)

1: p← p0, L← L0

2: M ← {〈ai, bi, ci〉 | triangle atoms ai, bi, ci of channel segment li ∈ L}
3: while min(ra1,b1,c1 , ra2,b2,c2 , ...) < h do
4: Compute force f and Hessian matrix H of conformation p
5: Compute modes W = (w1, ...,wm) using TNM. [86]
6: Determine constraints ṙ>i t ≥ ui according to (6.8), for all 〈ai, bi, ci〉 ∈M
7: t← ConstraintGuidedMotion(f , H,W, {ṙ1, ...}, {u1, ...})
8: Update conformation: p← p +W t
9: Update channel segments of L using the new p

10: Update M .
11: end while

6.3.1 General Experimental Procedure

Given a protein structure, it is first energetically minimized in vacuum using the

Tinker [102] software and the CHARMM22 force field. [83] Hydrogen atoms are added

to the structure during this process. From the minimized structure, we first compute the

Voronoi diagram.

In this work, we use the all the atoms in the myoglobin structure, including all

the hydrogen atoms, to construct the Voronoi diagram. Each atom in myoglobin is

represented by a point, with one exception. To take into account the size difference

between different atom types, especially between hydrogen atoms and heavy atoms, each

heavy atom within a short distance from the channel being studied is represented by a

set of points (12 points in total). These points are uniformly distributed, as in a regular

icosahedron, around the surface of the heavy atoms, each of which is given a radius that

is the difference between the van der Waals radii of the heavy atom and a hydrogen

atom. The reason why only the heavy atoms close to the channel are treated in this way

is for computational efficiency.

Next, putative ligand channels L0 are determined using the Voronoi diagram as a

guide. [78] Specifically, any path in the Voronoi graph that is between a cavity (which is

represented by a Voronoi vertex, see next section) and the solvent (which is represented

by any Voronoi vertex that is outside the protein and has a large clearance) and whose

clearance is greater than a given threshold is considered as a putative channel.
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Lastly, each putative channel is iteratively expanded using Algorithm 4 until it is

fully open. A channel is considered to be fully open if its clearance surpasses a preset

threshold h. In this work, the threshold is set to be 1.8 Å. The algorithm identifies at

each step the best combination of normal modes that are able to open up the channel

gradually. The sequence of steps from the initial conformation to the final conformation

where the channel is fully open form the transition pathway needed to open the channel.

Consequently, protein motions along this pathway provide a quantitative description of

what breathing motions are needed and how they open or close the channel. The amount

of work needed to open each channel is also computed and is used to estimate the relative

likelihood that a channel may be used by a ligand to enter into or exit from the protein

matrix. This amount of work corresponds to the enthalpy change between the initial

and the final conformations:

∆H = W. (6.19)

The free energy change between the two states, i.e.

∆F = ∆H − T ·∆S, (6.20)

is an even more desirable measure in predicting the likelihood for a channel to open.

However, the computation of free energy or entroy is much more complicated. In the

following, we will show the enthalpy change alone (∆H) already presents itself as a good

measure for predicting ligand migration channels.

6.3.2 Cavities in Myoglobin

Myoglobin is known to have seven large internal cavities. Besides its four Xenon

biding sites (Xe1–Xe4) [112, 138] and distal pocket (DP), [135] two additional cavities

Ph1 and Ph2 (renamed here as S1 and S2) were identified in an MD simulation [14]

(See Figure 6.2). The coordinates of the centers of these seven cavities in reference to a

crystal structure (1A6G.pdb) are given in Table S1 in Supplemental Information.
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Figure 6.2 Ligand migration channels in myoglobin. (A) A cartoon image of
myoglobin (pdbid: 1A6G) overlaid with cavities (green spheres), portals
(purple spheres with labels that start with P), and nine channels (rugged
blue tubes) identified by both our method (see the full list in Table 6.2) and
MD. (B) Different conformation changes needed to open these channels as
determined by our method. The thickness along the backbone trace shows
the magnitude of the motions of the residues as each channel opens up. The
RMSD deviations between the final conformations and the initial minimized
structure and their potential energy differences are also given. (C) The
primary sequence of myoglobin and its secondary structures (helices A to
H).
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To obtain the coordinates of the cavities in a new myoglobin structure (wild type or

mutants), we first align the structure to the reference crystal structure. Once aligned, the

coordinates of the cavities in the reference structure are copied and used as “estimated

cavity centers” for the new structure.

As aforementioned, each cavity is represented by one Voronoi vertex in the Voronoi

diagram. Here is how the vertex is picked. Since for each cavity the coordinates of the

“estimated cavity center” are known, the Voronoi vertex that is the closest to the the

estimated cavity center and whose clearance surpasses a given threshold is selected as

the representative vertex for that cavity.

6.3.3 Ligand Migration Channels in Myoglobin

In this study, 1A6G (pdb-id) is used as the initial structure. In the energy minimiza-

tion process, in order to prevent the heme from being bended, the positions of its heavy

atoms are fixed. After energy minimization, Voronoi diagram is constructed from the

minimized structure and used as a guide [78] to generate putative channels. As a result,

41 putative channels are determined that connect the solvent with the seven internal

cavities. Next, all 41 putative channels are tried to be stretched open using Algorithm 4

and the work costs to open them are recorded.

6.3.3.1 Putative Channels and the Work Cost to Open Them

Table 6.2 summarizes the results for all 41 putative channels. The channels are

sorted by the energy cost to open them, and compared with the channels determined

in a previous MD simulation (which are labeled by portal numbers: P1 to P9). [109] A

channel from our work is assigned to one of the numbered portals (i.e., P1 to P9) that were

previously identified in an MD simulation [109] if at least two residues lining its opening

to the solvent are the same as the residues reported to line the numbered portal. [109]

Remarkably, most of the channels that require the lowest energy cost to open find a



www.manaraa.com

135

match with one of the channels identified in MD simulations. [109] This implies that the

amount of entropy changes may be similar for most of the channels or proportional to

the amount of enthalpy changes. And as a result, the change of enthalpy, or the work

cost, alone presents itself a very good indicator in predicting ligand channels. However,

there are some exceptions. There exist a few channels that are easy to open according to

our method (i.e., small ∆H) but have not been observed during MD simulations, such

as z4, z7, z10, and z11. One plausible explanation for this is that these channels actually

do open up dynamically, but they are overlooked in MD. This is quite possible since

MD simulations are stochastic by nature and are incomplete in conformation sampling.

The opening of these channels may also represent a more rare event and thus present a

higher entropy cost than other channels and consequently, they may be less favored by

the ligand kinetically.

It is helpful also to realize that results in Table 6.2 are predictions of ligand migration

channels sorted by the amount of change in enthalpy (or the work cost), not by the

amount of change in free energy. It is foreseeable that thermal fluctuations, which are

quite large in macromolecules like proteins (see chapter 12.5 in [52]), are able to surpass

these barriers and open these channels. Results in Table 6.2 do not tell us how often

these channels may open, since that depends also on the entropy cost (or gain).

Figure 6.3 plots the relationship between the energy cost in opening a channel and

its initial clearance. The general trend is that as initial clearance decreases, the cost in

opening a channel increases, though there are many exceptions. There are some channels

(such as z37 and z41) that are more difficult to open though they have relative larger

initial clearances, while other channels (such as z5, z8 and z10), which have smaller initial

clearances, are easier to open. This implies that initial channel clearance is only a fair

indicator of a putative channel’s openability.
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Table 6.2 Prediction results on ligand migration channels.

idxa cvtyb clrsc rmsdd coste portalf idx cvty clrs rmsd cost portal

z1 S1 0.69 0.24 27.81 P8 z22 Xe2 0.22 0.40 134.44
z2 Xe1 0.62 0.25 44.42 P2 z23 Xe2 0.38 0.46 134.74
z3 Xe2 0.46 0.29 47.09 P3 z24 Xe1 0.21 0.48 137.97
z4 Xe1 0.26 0.38 55.83 z25 S2 0.32 0.47 142.69
z5 Xe1 0.25 0.36 56.89 P3 z26 DP 0.25 0.46 160.75 P4
z6 S1 0.55 0.31 58.09 P7 z27 Xe4 0.27 0.46 175.84
z7 Xe1 0.43 0.35 73.85 z28 Xe4 0.24 0.51 182.89 P5
z8 Xe3 0.23 0.30 74.82 P6 z29 S2 0.28 0.54 191.27
z9 DP 0.47 0.36 76.11 P1 z30 S2 0.33 0.50 191.96
z10 Xe3 0.14 0.29 85.93 z31 Xe4 0.29 0.48 195.40
z11 Xe1 0.32 0.40 99.58 z32 Xe1 0.31 0.50 196.32
z12 Xe3 0.34 0.41 108.15 P9 z33 S2 0.17 0.52 199.17
z13 Xe3 0.40 0.42 109.18 z34 DP 0.19 0.53 203.14
z14 S1 0.11 0.38 111.42 z35 Xe1 0.26 0.50 204.24
z15 Xe3 0.17 0.45 113.47 z36 Xe4 0.28 0.53 244.69
z16 S2 0.42 0.39 116.53 z37 Xe4 0.32 0.51 256.18
z17 Xe3 0.42 0.41 120.40 z38 Xe4 0.22 0.57 288.13
z18 Xe4 0.49 0.42 127.60 z39 Xe4 0.27 0.55 289.11
z19 S2 0.22 0.42 129.97 z40 Xe1 0.19 0.53 295.08
z20 Xe1 0.30 0.49 132.59 z41 Xe4 0.37 0.57 306.50
z21 S1 0.18 0.44 132.73

aputative channel index;
bcavity to which the channel is connected;
cinitial clearance of the channel [Å];
dRMSD between the initial and final conformations [Å];
etotal energy cost ∆H to expand the channel [kcal/mol];
fcorresponding portal as determined in MD. [109]
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Figure 6.3 The relationship between the energy cost required to open a chan-
nel and the channel’s initial clearance.

6.3.3.2 Quantitative Delineation of the Protein Motion Trajectories that

Open the Channels

Our channel stretching procedure, when applied to the putative channels listed in

Table 6.2, not only predicts which channels are more likely to open than others in terms

of the work cost, but also determines the breathing motions that open these ligand mi-

gration channels. It identifies at each iteration step the best combination of normal

modes that is able to gradually open up the channel. This sequence of steps from the

initial conformation to the final conformation where the channel is fully open represent

the transition pathway needed to open the channel. The rocking motion along this path-

way provides a quantitative description of what breathing motions are needed and how

they open and close the channel. One advantage of our approach over MD simulations

is that one has full control in selecting which channel to study and thus focusing on that

channel only, while for MD-based simulations, one has to rely on pure chance and wait

for the event of an ligand entering through the channel of interest to happen, due to

the stochastic nature of the simulation process. Thus the rarer a channel is used by a
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ligand, the more difficult it becomes to computationally study and analyze that channel

using MD. Another potential benefit is that the approach examines how a channel may

be opened based on enthalpy alone and it separates out the thermal fluctuations that are

involved in the actual process. Since thermal motions are filtered out, it may provide a

clearer and more insightful understanding of how residue-residue interactions open and

close a channel.

All the final conformations (in PDB format) at which the channels are open, the

transition pathways (in PDB format) needed to open each and every of these channels,

as well as movies that display the breathing motions needed to open all these channels

are available at http://www.cs.iastate.edu/~gsong/CSB/channels/.

6.3.3.3 Identify Key Normal Mode Motions and Key Residues that Reg-

ulate the Channels

The quantitative delineation of the breathing motions that open a channel allows us to

closely examine the motions and identify key normal mode motions or key residues that

regulate the channel. Since the modes selected at each iteration are torsional modes,

the combination of these modes represent a displacement in the torsional space. The

residues whose torsional angles (which could be either backbone φ/ψ angles or side-

chain χ angles) display the largest change are those that contribute the most to opening

the channels. On the other hand, the residues that have the most strain are those that

block the channel from opening. We define the strain of a residue as the potential energy

change within the residue between its initial and final conformations.

In the following, we present the results of a few closely examined channels. For each

channel, we present in a plot (see Figure 6.4) the residues that line the channel and their

distances to the cavity, the initial clearances along the channel, the amount of backbone

motions and side chain motions required of the residues to open the channels, and the

magnitudes of motions in Cartesian space as measured by root mean square distance

http://www.cs.iastate.edu/~gsong/CSB/channels/
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(RMSD), and lastly, the strain that incurs on each residue as a result of opening the

channel. Movies that show the opening processes of these channels and the movements

of the residues that line the channels are available at http://www.cs.iastate.edu/

~gsong/CSB/channels/.
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Figure 6.4 The initial clearances, conformation changes required of the chan-
nel lining residues, and the strains incurred on them as a result
of opening some of the channels: (A) the channel from Xe1 to portal
2, (B) the channel from S1 to portal 7, and (C) the channel from Xe4 to
portal 9.

Channel Xe1 to P2 (z2): For this channel, side-chain motions play a dominating

role, especially those of Leu104 and Tyr146. Figure 6.4(A) clearly shows that these

two residues have the largest side-chain rotations and experience the most strain. The

channel is opened by the side-chain swing motions of Leu104 and Tyr146.

http://www.cs.iastate.edu/~gsong/CSB/channels/
http://www.cs.iastate.edu/~gsong/CSB/channels/
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Channel S1 to P7 (z6): The S1 to P7 channel, on the other hand, is more controlled

by the motions of backbone torsional angles of several residues, namely Lys16, Val17,

and Ala19, as is evident from Figure 6.4(B). The combined backbone motions of these

residues cause a large Cartesian space displacement for Val17 and bring it away from the

center of the channel and thus increase the channel radius.

Channel Xe3 to P9 (z12): This is a case where one residue (Trp7) plays a dom-

inating role in blocking the channel path while the other residues are freer to move. In

Figure 6.4(C), it is seen that Trp7, compared to other residues lining the channel, clearly

takes most of the strain (potential energy increase). Trp7 itself does not undergo much

side-chain or backbone rotations in the channel opening process. It resists the motions

and as a result, a large amount of internal strain is created in the residue. Replacing

Trp7 with a smaller residue such as ALA should greatly lower the energy cost to open

this channel.

6.3.3.4 Can the Channels Be Opened by Backbone Motions or Side-

Chain Motions Alone?

The opening and closing of each channel are often controlled by the interplay of

backbone motions and side-chain motions. However, the necessity of having side-chain

motions or backbone motions in opening a channel has not been systematically assessed

before. One advantage of our proposed method is that it allows one to assess indepen-

dently the contributions of side-chain motions and backbone motions. In the following,

we apply our method to investigate if the channels can be opened by either motions

alone, and if so, what extra work is needed.

Figure 6.5 compares the energy cost to open some of the channels when only backbone

motions (blue dot-dashed) or only side-chain motions (orange dashed) or both (black solid

line) are allowed. We denoted by the infinity sign, ∞, the case that a channel cannot be

opened.
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Figure 6.5 Comparisons of energy costs required to open a channel when only
backbone motions (blue dot-dashed) or only side-chain motions
(orange dashed) or both (black solid) are allowed. Channels are
sorted by the opening energy cost when both motions are allowed. ∞ means
that the channel cannot be opened.

Results in Figure 6.5 show that many channels cannot be opened by side-chain mo-

tions alone (orange dashed). The backbone motions are capable to open each channel

even though it requires much more work. Interestingly, the well-known HIS channel

(DP to P1) cannot be fully opened by side-chain motions alone, though it is generally

accepted that His64 plays a gating role in opening the channel. A plausible explanation

is that backbone breathing motions are needed to create enough space for the side-chain

of His64 to swing open.

6.3.4 Myoglobin Mutants: How Mutations Affect the Histidine Channel

Another advantage of our proposed method is that it can be easily extended to study

the effects of mutations on ligand migration channels. Mutagenesis studies can provide

deep insights into the behaviors of proteins. Deep mutational scanning as reported by

Fowler and Fields [32] promises that large-scale mutagenesis data might become available

experimentally. Our proposed method provides a convenient computational approach

for studying the effects of mutations. Such computational studies can be combined with



www.manaraa.com

142

experimental mutagenesis studies to gain deeper insights into the functional behaviors

of proteins.

Myoglobin has been long studied since its 3-D structure was first revealed by X-ray

crystallography. [57] His64 was soon proposed to play a gating role of the channel between

the heme pocket and solvent for ligand entry and exit. [101] This was confirmed by many

mutagenesis studies that followed, some of which studied how mutations affects ligand

entry and exit rates. For example, Scott et al. [116] reported biomolecular rate constants

for ligand entry/escape of the wild type myoglobin and its several mutants. These rates

represent how fast a ligand enters into or escapes from the protein. It has been well

established experimentally that most of the ligand entry is through the HIS channel. [98]

To computationally study the effects of mutations, we apply our method to study

the HIS channel of myoglobin wild type (WT) and four mutants (F46A, F46W, H64A,

H64W). For starting conformations, structures 2MGK and 3OGB are used for WT and

mutant H64W, respectively. The starting conformations of F46A, F46W, and H64A are

manually generated using the psfgen program from VMD. [50]

6.3.4.1 Mutations at His64

It is expected that replacing His64 with a Tryptophan makes it more difficult for

the HIS channel to open. Table 6.3 lists the strain energy of each residue or the strain

between an adjacent pair of residues. Strain is defined as the potential energy increase

of a residue (or between a pair of residues) as a result of changes in structure. The

results show that the H64W mutation greatly increases the strain in residue 64 (now a

Trp) and in the heme. This is probably because the larger side-chain of Trp reduces the

available room in the channel and consequently, stretching open the channel creates more

strain on the lining residues, especially on Trp64 and the heme. Moreover, Our results

indicate that Trp64 rotation alone cannot fully open the channel. The motions of Thr67

contribute the other half. Figure 6.6(A) shows that in WT, His64 can rotate enough
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to open the channel from initial (in gray) to final (in color) conformations. However,

in Figure 6.6(B), rotation of Trp64 in mutant H64W is hindered by part of the heme

(highlighted in red), and consequently Thr67 has to be moved away to fully open the

channel.

Table 6.3 Energy costs and strains of opening HIS channel of Mb wild type and its 4
mutants.

wild type
or mutant

clear
-ancea

opening

costb
entry
ratec

strain of residue i strain between residues i-j
Arg Phe His Thr Heme 60 60 64 64 Heme Heme
45 46 64 67 -45 -46 -45 -46 -64 -67

WT 0.57 76.71 34±7 5.7 0.3 8.6 2.0 10.6 4.3 -0.2 5.9 0.1 0.4 2.3
F46A 0.57 66.24 110 2.6 0.3 6.8 1.9 7.4 3.1 0.0 2.4 0.1 -1.0 2.1
F46W 0.40 71.20 35 7.6 0.1 11.0 4.3 8.6 6.9 1.1 9.0 -0.7 -2.7 3.8
H64A 0.89 39.33 410 0.9 0.9 1.5 0.2 6.0 3.1 0.1 -0.1 0.3 0.4 1.3
H64W 0.25 88.67 8.6 0.7 0.1 13.0 3.7 17.6 5.2 -0.2 -4.3 0.3 5.2 3.8

The table shows the energy costs and strains created in opening the HIS channel of
myoglobin wild type and its four mutants.
ainitial clearance [Å];
benergy cost to open the HIS channel [kcal/mol];
cligand entry rate as measured by Scott et al. [116] [µM−1s−1]

By replacing His64 with Alanine, many channel-opening energy barriers are removed.

It was thought [98] that this drastic effect was mainly due to the enlarged void created

by the mutation. Our computational results confirm this postulation. The strain of on

residue 64 (now an Alanine) is almost gone after the mutation. The strain on Arg45

also drops significantly since the formal pressing between Arg45 and His64 due to steric

constraints is gone.

6.3.4.2 Mutations at Phe46

H46A and H46W were studied experimentally by Lai et al. [69] to test whether or

not Phe46 sterically restricts the swing rotations of His64. Our results in table 6.3

and Figure 6.6(C)/(D) suggest that it is actually Arg45 that directly constrains His64’s
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Arg45
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Trp46
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Figure 6.6 The interplay of residues in opening the HIS channel of myoglobin
(A) wild type, and (B)-(D) its three mutants. The initial conforma-
tions (gray transparent) and the final conformations (in color) of the key
residues (labelled) are shown. In (A), both the open and closed conforma-
tions of His64 from crystal structure 1A6G are shown in transparent red.

rotations. Arg45 comes between His64 and Phe46. Phe46 comes into play indirectly by

constraining the motions of Arg45. In mutant H46A, in which Phe46 is replaced with

Alanine, Arg45 becomes less constrained and can move more freely. As a result, His64

can rotate without difficulty. However, in H46W, Trp46 and Asp60 greatly constrain the

motions of Arg45, which in turn blocks His64’s rotations. In the end, since His64 cannot

open the channel large enough, Thr67 has to budge to create a large enough hole for a

ligand to pass through.
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6.3.4.3 Understanding How Mutations Affect Ligand Entry Rates

Our proposed method computes the work cost to open a channel. When applied to

both the wild type and the mutants of the same protein, it can be used to study the

effects of mutations computationally.

From our computations, we find that, among the wild type myoglobin and its mutants,

the difficulty to open the HIS channel is at its highest in the H64W mutant, followed by

WT, mutants F46W, F46A, and H64A. The actual energy costs to open the HIS channel

in these structures are summarized in Table 6.3. Notice that the order of the energy

costs (3rd column) matches well with that of the entry rates (4th column) reported

experimentally: [116] the larger the entry rate, the smaller the energy cost.

Now the energy cost (∆H) to open a channel and the channel opening frequency

(and therefore the ligand entry rate k) can be related in the following way:

k ∝ exp

(
−∆H

kBT

)
. (6.21)

That is, there is a linear relationship between the energy cost and the logarithm of the

inverse of the rate:

∆H = a · log(1/k) + b, (6.22)

where a (positive) and b are two constants. Ideally, we should use the free energy change

∆F in the above equation. However, if the amount of entropy change ∆S involved in

opening the HIS channel is assumed to be the same for the WT and the mutants, the

above equation is valid for ∆H as well.

In Figure 6.7, we plot the energy costs as predicted by our method to open the HIS

channel versus the logarithms of ligand entry rates as measured experimentally, [116] for

myoglobin wild type and it mutants. Remarkably, the data points in the figure clearly

show that there is a strong linear relationship between our predicted energy costs and

the logarithms of the experimental rate constants. Together with the channel prediction
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results in Table 6.2, results here strongly demonstrate that our NMA-based method is

effective in predicting ligand migration channels and the effects of mutations.
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H64W
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Figure 6.7 Linear relationship between the amount of change in enthalpy and
the logarithm of ligand entry rate.

6.4 Summary and Discussions

Molecular dynamics (MD) and normal mode analysis (NMA) are two widely used

computational methods for studying protein dynamics. Both tools are powerful and

they complement each other in important ways. The advantage of NMA is that it has a

closed-form analytical solution and as a result it is able to cover much more efficiently the

conformation space near the native state. For the problem of ligand migration pathways

and channels, most of existing computational studies have been done using MD. In

comparison, little work has been done that uses a NMA-based method.

In this work, we have presented and applied a novel normal mode-based method to

efficiently predict ligand migration channels of myoglobin and its mutants. The motiva-

tion behind this work springs from the observation that normal mode motions are closely

linked to breathing motions that are often thought to be the cause that opens ligand

migration channels. Our results in this work are important for several reasons. First,

since protein normal modes are closely linked to protein breathing motions, our normal
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mode-based method allows us to quantitatively delineate what breathing motions open

a channel. Second, the method allows us to gain a direct and detailed depiction of the

motions of each and every residue that lines a channel and thus allows us to identify

key residues that play a dominating role in regulating the channel, either through back-

bone motions or side-chain motions or a combination of both. Third, the all-atom based

model and the full force-field employed in our method allow us to gain a realistic ener-

getics related to the work cost required to open a channel. Fourth, our method provides

an efficient computational tool for studying the effects of mutations on ligand migration

channels and on ligand entry rates. Lastly, the features summarized above mean that

our method has strong predictive power over ligand migration channels in other proteins

of known structures, over the effects of mutations, and in recognizing key residues.

Our results on myoglobin and its mutants are in excellent agreement with MD simula-

tion results and experimentally determined ligand entry rates. Most of the channels that

require the least amount of work to open as predicted by our method match with channels

identified in MD simulations. When applied to myoglobin mutants related to the HIS

channel, the work costs predicted by our method, or the enthalpy changes required to

open the HIS channel, are found to match closely with experimentally measured ligand

entry rates. In addition, the method has predicted key residues and their roles in open-

ing a channel and these predictions also are in agreement with MD simulation results

and mutagenesis studies. Lastly, our method provides atomic-scale transition pathways

(conformation changes of the protein) needed to open each and every channel. Transition

pathways (in PDB format) and movies that display how breathing motions open these

channels are available at http://www.cs.iastate.edu/~gsong/CSB/channels/. Such

atomic-scale transition pathways are not available from other channel mapping meth-

ods such as ILS, [23] and it would take a much longer time to obtain them using MD

simulations.

There are three notable contributions in the method development. The first is to

compute the derivative of a channel clearance with respect to any given mode. This

http://www.cs.iastate.edu/~gsong/CSB/channels/
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derivative describes how rapidly (or slowly) a breathing motion along a particular normal

mode increases or decreases the clearance of a given channel. It is foreseeable that such

derivatives with respect to the normal modes may be used to study other structural or

functional properties of proteins that depend on protein dynamics. To the best of our

knowledge, this has not been done before. Secondly, finding the best combination of

normal modes that gradually open a channel is formulated as an optimization problem.

Thirdly, the optimization function we used is innovative. When defining what is the

best combination of normal modes that slowly open a channel, there are two attributes

that we desire to minimize at each iteration: one is the work required and the other

is the magnitude of the conformation change. How to minimize one without neglecting

the other? Though it is desired that the work cost to stretch open a channel should

be minimized, however, if we focus only on minimizing the work cost, it may result in

large unrealistic movements. Therefore, we need to somehow minimize the work cost

while keeping the magnitude of the motions (i.e., ‖t‖) small at the same time. Our

optimization function, which is of ellipsoidal form and has an adjustable eccentricity

factor, provides a perfect balance between the two requirements.

The limitation of the current method is that it does not consider the potential in-

teractions between the ligand and the host protein. While this is acceptable for small

gaseous ligands, [33] care must be taken when applying this method to larger ligands

or charged ligands (such as proton or metal ions), since in those cases van der Waals

or electrostatic interactions between the ligand and the host protein may strongly affect

the normal modes of the host protein.
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CHAPTER 7. SUMMARY AND CONCLUSION

In this dissertation, I have made several significant contributions to the field of com-

putational biology, especially in the area of computational studies of protein dynamics

that use normal modes. Specifically, I have developed a new approach that bridges clas-

sical normal mode analysis (NMA) with elastic network models and a series of novel

schemes for deriving simplified NMA models that are both efficient and accurate. Since

NMA is a widely used tool for studying protein dynamics, contributions made in this

dissertation may have far-reaching impacts.

My first computational model, the force spring model (FSM), was developed to unify

two popular elastic network models: GNM and ANM. The model was based on a key

realization of how inter-residue forces or torques precisely influences normal mode com-

putations. It was found that NMA Hessian matrix can always be written as a sum of

spring-based terms and force-based terms and that the total contribution of the force-

based terms (by inter-residue forces) is significantly smaller than that by the spring-based

terms.

The first study then triggered the development of spring-based NMA (sbNMA) and

simplified spring-based NMA (ssNMA). Both models keep only the dominant spring-

based terms. In so doing, they remain nearly accurate as the classical NMA is and yet

avoid the cumbersome energy minimization step that is required by classical NMA.

While the above two contributions are on the simplification of interaction models in

normal mode computations, my third contribution is on the simplification of structural

models. Coarse-grained structural models are often favored in normal mode compu-
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tations for large proteins or protein complexes. However, many coarse-grained models

are limited in their accuracy in representing the dynamics. I have developed a novel

coarse-graining scheme that is able to preserve the atomic accuracy in dynamics while

coarse-graining the structure. This is highly desirable and useful especially in dynamics

studies of very large structure complexes. The method utilizes the sparseness of Hessian

matrix to achieve efficient coarse-graining.

My fourth contribution is on the vibrational spectrum of globular proteins. I have

found the vibrational spectrum of globular proteins is universal. That is, regardless

of the protein in question, it closely follows one universal curve. The aforementioned

accurate sbNMA was especially helpful in understanding what the different peaks in the

vibrational spectrum represent. This work makes possible a potential two-way dialogue

between theory and experiment regarding the vibrational spectrum: experimental spectra

of proteins may be used to fine tune theoretical empirical potentials, and the various

features and peaks observed in theoretical studies may be used to guide experimental

studies.

My fifth contribution is on developing a new normal-mode-based computational

method that predicts ligand migration channels and ligand entry rates in proteins and

mutants. To this end I developed several new techniques, such as channel expan-

sion ratios by normal modes, a novel ellipsoidal-shaped minimization function, and a

constraint-guided motion planning approach, etc. The new computational method iden-

tifies and gradually opens a ligand channel while minimizing the potential energy cost.

The method has been successfully applied to find ligand migration channels of myo-

globin. The prediction results matched well with both molecular dynamics simulation

results and experimentally-determined ligand entry rates.

My thesis work opens up a number of possible directions for future research. Future

research may include but is not limited to: (1) classification of mutants by their func-

tional motions, specifically how they open up ligand migration channels, as an extension
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of my study on myoglobin mutants; (2) a deeper understanding of the degeneracy of

protein normal modes, such as why some modes are more prone to degeneracy than

others. (3) improving sbNMA by taking into account explicit solvent and studying the

effect of solvation on protein complexes and on protein-protein interactions. (4) A deeper

dynamics-based understanding of how antibiotics can hinder the proper function of bac-

terial ribosomes.
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